Differences of the oxidation process and secondary organic aerosol formation at low and high precursor concentrations

被引:28
|
作者
Chen, Tianzeng [1 ,3 ]
Liu, Yongchun [1 ,3 ,4 ]
Chu, Biwu [1 ,2 ,3 ]
Liu, Changgeng [1 ]
Liu, Jun [1 ,3 ]
Ge, Yanli [1 ,3 ]
Ma, Qingxin [1 ,2 ,3 ]
Ma, Jinzhu [1 ,2 ,3 ]
He, Hong [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Res Ctr Ecoenvironm Sci, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100085, Peoples R China
[2] Chinese Acad Sci, Inst Urban Environm, Ctr Excellence Reg Atmospher Environm, Xiamen 361021, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Beijing Univ Chem Technol, Beijing Adv Innovat Ctr Soft Matter Sci & Engn, Beijing 100029, Peoples R China
来源
JOURNAL OF ENVIRONMENTAL SCIENCES | 2019年 / 79卷
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Secondary organic aerosol; Aromatic hydrocarbons; Aerosol mass spectrometer; Low-volatility compounds; Oxidation processes; M-XYLENE; AROMATIC-HYDROCARBONS; SOA FORMATION; ELEMENTAL COMPOSITION; ALPHA-PINENE; PHOTOOXIDATION; NOX; TOLUENE; HYGROSCOPICITY; MECHANISM;
D O I
10.1016/j.jes.2018.11.011
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Current atmospheric quality models usually underestimate the level of ambient secondary organic aerosol (SOA), one of the possible reasons is that the precursors at different concentrations may undergo different oxidation processes and further affect SOA formation. Therefore, there is a need to perform more chamber studies to disclose the influence. In this work, SOA formation over a wide range of initial precursor concentrations (tens of ppb to hundreds of ppb levels) was investigated in a 30m(3) indoor smog chamber, and mainly through the analysis of multiple generations of VOCs detected from HR-ToF-PTRMS to expound the difference in the oxidation process between low and high precursor concentrations. Compared to high initial concentrations, gas-phase intermediates formed at low concentrations had a higher intensity by about one order of magnitude, and the low-volatility compounds also had a higher formation potential due to the competition between semi-volatile intermediates and precursors with oxidants. In addition, the formed SOA was more oxidized with higher f(44 )value (0.14 +/- 0.02) and more relevant to real atmosphere than that formed at high concentrations. This work should help to deeply understand SOA formation and improve the performance of air quality models for SOA simulation. (C) 2018 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.
引用
收藏
页码:256 / 263
页数:8
相关论文
共 50 条
  • [1] Differences of the oxidation process and secondary organic aerosol formation at low and high precursor concentrations
    Tianzeng Chen
    Yongchun Liu
    Biwu Chu
    Changgeng Liu
    Jun Liu
    Yanli Ge
    Qingxin Ma
    Jinzhu Ma
    Hong He
    Journal of Environmental Sciences, 2019, 79 (05) : 256 - 263
  • [2] Secondary organic aerosol formation from the oxidation of decamethylcyclopentasiloxane at atmospherically relevant OH concentrations
    Charan, Sophia M.
    Huang, Yuanlong
    Buenconsejo, Reina S.
    Li, Qi
    Cocker, David R., III
    Seinfeld, John H.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2022, 22 (02) : 917 - 928
  • [3] High formation of secondary organic aerosol from the photo-oxidation of toluene
    Hildebrandt, L.
    Donahue, N. M.
    Pandis, S. N.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2009, 9 (09) : 2973 - 2986
  • [4] Formation of Low Volatility Organic Compounds and Secondary Organic Aerosol from Isoprene Hydroxyhydroperoxide Low-NO Oxidation
    Krechmer, Jordan E.
    Coggon, Matthew M.
    Massoli, Paola
    Nguyen, Tran B.
    Crounse, John D.
    Hu, Weiwei
    Day, Douglas A.
    Tyndall, Geoffrey S.
    Henze, Daven K.
    Rivera-Rios, Jean C.
    Nowak, John B.
    Kimmel, Joel R.
    Mauldin, Roy L., III
    Stark, Harald
    Jayne, John T.
    Sipila, Mikko
    Junninen, Heikki
    St. Clair, Jason M.
    Zhang, Xuan
    Feiner, Philip A.
    Zhang, Li
    Miller, David O.
    Brune, William H.
    Keutsch, Frank N.
    Wennberg, Paul O.
    Seinfeld, John H.
    Worsnop, Douglas R.
    Jimenez, Jose L.
    Canagaratna, Manjula R.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2015, 49 (17) : 10330 - 10339
  • [5] Influence of Aerosol Acidity on the Formation of Secondary Organic Aerosol from Biogenic Precursor Hydrocarbons
    Offenberg, John H.
    Lewandowski, Michael
    Edney, Edward O.
    Kleindienst, Tadeusz E.
    Jaoui, Mohammed
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2009, 43 (20) : 7742 - 7747
  • [6] Is benzene a precursor for secondary organic aerosol?
    Martín-Reviejo, M
    Wirtz, K
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2005, 39 (04) : 1045 - 1054
  • [7] Role of aldehyde chemistry and NOx concentrations in secondary organic aerosol formation
    Chan, A. W. H.
    Chan, M. N.
    Surratt, J. D.
    Chhabra, P. S.
    Loza, C. L.
    Crounse, J. D.
    Yee, L. D.
    Flagan, R. C.
    Wennberg, P. O.
    Seinfeld, J. H.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2010, 10 (15) : 7169 - 7188
  • [8] Secondary Organic Aerosol Formation from Ambient Air at an Urban Site in Beijing: Effects of OH Exposure and Precursor Concentrations
    Liu, Jun
    Chu, Biwu
    Chen, Tianzeng
    Liu, Changgeng
    Wang, Ling
    Bao, Xiaolei
    He, Hong
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2018, 52 (12) : 6834 - 6841
  • [9] Secondary organic aerosol formation from camphene oxidation: measurements and modeling
    Li, Qi
    Jiang, Jia
    Afreh, Isaac K.
    Barsanti, Kelley C.
    Cocker, David R., III
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2022, 22 (05) : 3131 - 3147
  • [10] Secondary organic aerosol formation from the photo-oxidation of benzene
    Borras, Esther
    Antonio Tortajada-Genaro, Luis
    ATMOSPHERIC ENVIRONMENT, 2012, 47 : 154 - 163