A vector version of Krasnosel'skii's fixed point theorem in cones and positive periodic solutions of nonlinear systems

被引:50
作者
Precup, Radu [1 ]
机构
[1] Univ Babes Bolyai, Dept Appl Math, Cluj Napoca 400084, Romania
关键词
Fixed point; cone; positive solution; differential system; periodic solution;
D O I
10.1007/s11784-007-0027-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new version of Krasnosel'skii's fixed point theorem in cones is established for systems of operator equations, where the compression-expansion conditions are expressed on components. In applications, this allows the nonlinear term of a system to have different behaviors both in components and in variables.
引用
收藏
页码:141 / 151
页数:11
相关论文
共 18 条
[1]  
Agarwal RP, 2003, DYNAM SYST APPL, V12, P323
[2]  
[Anonymous], THEOREMS LERAYSCHAUD
[3]  
[Anonymous], 1960, SOVIET MATH DOKL
[4]  
COUCHOURON JF, TOPOL METHO IN PRESS
[5]   MULTIPLE POSITIVE SOLUTIONS OF SOME BOUNDARY-VALUE-PROBLEMS [J].
ERBE, LH ;
HU, SC ;
WANG, HY .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 184 (03) :640-648
[6]  
FRANCO D, INDIAN J PU IN PRESS
[7]  
Granas A., 2003, FIXED POINT THEOR-RO, DOI 10.1007/978-0-387-21593-8
[8]  
Guo D. J., 1996, NONLINEAR INTEGRAL E
[9]  
Krasnoselskii M. A., 1964, Positive Solutions of Operator Equations
[10]   Multiple positive solutions of Hammerstein integral equations and applications to periodic boundary value problems [J].
Lan, KQ .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 154 (02) :531-542