Proteome analysis of tunicamycin-induced ER stress

被引:65
作者
Bull, Vibeke Hervik [1 ]
Thiede, Bernd [1 ]
机构
[1] Univ Oslo, Biotechnol Ctr Oslo, N-0317 Oslo, Norway
关键词
Endoplasmic reticulum; ER stress; Neuroblastoma; SILAC; Tunicamycin; ENDOPLASMIC-RETICULUM STRESS; TRANSFER-RNA SYNTHETASE; CHAIN BINDING-PROTEIN; MESSENGER-RNA; MOLECULAR CHAPERONES; DISULFIDE-ISOMERASE; TRANSLOCATION; DEGRADATION; MECHANISMS; APOPTOSIS;
D O I
10.1002/elps.201100565
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Endoplasmic reticulum (ER) stress occurs upon increased levels of unfolded proteins and results in activation of cellular responses such as the unfolded protein response (UPR) and ER-associated protein degradation (ERAD). To examine ER stress, we performed a quantitative proteome analysis of human neuroblastoma cells using stable isotope labeling with amino acids in cell culture (SILAC) in combination with SDS-PAGE and LC-MS/MS. Proteins associated with the ER were overrepresented in the dataset of altered proteins. In particular, ER chaperones responsible for protein folding were significantly upregulated in response to ER stress. The important ER stress regulator 78 kDa glucose-regulated protein (GRP-78 or BiP) was highly upregulated together with several proteins that have been found to form a multiprotein complex with BiP including cyclophilin B, DnaJ homolog subfamily B member 11, endoplasmin, hypoxia upregulated protein 1, protein disulfide isomerase and protein disulfide isomerase A4 upon tunicamycin-induced ER stress. Furthermore, seven aminoacyl-tRNA synthetases and five proteins belonging to the Sec61 complex were increased in response to tunicamycin-induced ER stress.
引用
收藏
页码:1814 / 1823
页数:10
相关论文
共 51 条
[1]   RETENTION OF MESSENGER-RNA ON ENDOPLASMIC-RETICULUM MEMBRANES AFTER INVIVO DISASSEMBLY OF POLYSOMES BY AN INHIBITOR OF INITIATION [J].
ADESNIK, M ;
LANDE, M ;
MARTIN, T ;
SABATINI, DD .
JOURNAL OF CELL BIOLOGY, 1976, 71 (01) :307-313
[2]   The molecular mechanisms underlying BiP-mediated gating of the Sec61 translocon of the endoplasmic reticulum [J].
Alder, NN ;
Shen, Y ;
Brodsky, JL ;
Hendershot, LM ;
Johnson, AE .
JOURNAL OF CELL BIOLOGY, 2005, 168 (03) :389-399
[3]   Global networks of functional coupling in eukaryotes from comprehensive data integration [J].
Alexeyenko, Andrey ;
Sonnhammer, Erik L. L. .
GENOME RESEARCH, 2009, 19 (06) :1107-1116
[4]   Ubiquitin and the control of protein fate in the secretory and endocytic pathways [J].
Bonifacino, JS ;
Weissman, AM .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 1998, 14 :19-57
[5]   Regulation of apoptosis by endoplasmic reticulum pathways [J].
Breckenridge, DG ;
Germain, M ;
Mathai, JP ;
Nguyen, M ;
Shore, GC .
ONCOGENE, 2003, 22 (53) :8608-8618
[6]   IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA [J].
Calfon, M ;
Zeng, HQ ;
Urano, F ;
Till, JH ;
Hubbard, SR ;
Harding, HP ;
Clark, SG ;
Ron, D .
NATURE, 2002, 415 (6867) :92-96
[7]   The luminal domain of ATF6 senses endoplasmic reticulum (ER) stress and causes translocation of ATF6 from the ER to the Golgi [J].
Chen, X ;
Shen, J ;
Prywes, R .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (15) :13045-13052
[8]   The action of molecular chaperones in the early secretory pathway [J].
Fewell, SW ;
Travers, KJ ;
Weissman, JS ;
Brodsky, JL .
ANNUAL REVIEW OF GENETICS, 2001, 35 :149-191
[9]   Export of a cysteine-free misfolded secretory protein from the endoplasmic reticulum for degradation requires interaction with protein disulfide isomerase [J].
Gillece, P ;
Luz, JM ;
Lennarz, WJ ;
de la Cruz, FJ ;
Römisch, K .
JOURNAL OF CELL BIOLOGY, 1999, 147 (07) :1443-1456
[10]   IMMUNOGLOBULIN HEAVY-CHAIN BINDING-PROTEIN [J].
HAAS, IG ;
WABL, M .
NATURE, 1983, 306 (5941) :387-389