About the Dirac operator

被引:0
作者
Turtoi, Adriana [1 ]
机构
[1] Univ Bucharest, Fac Math & Informat, RO-70109 Bucharest, Romania
来源
BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS | 2006年 / 11卷 / 01期
关键词
Dirac operator; eigenvalues estimation;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We apply a result of Kim about the eigenvalue estimation of the Dirac operator on a Riemannian compact spin manifold (M,g), considering M = N x S-1, where N is a Riemannian compact spin manifold admitting a parallel vector field. We show that the lower bounds given in a theorem of Hijazi and Zhang for the eigenvalues of the so called (submanifold) twisted Dirac operator D-H in the case when H not equal 0 is true for H = 0 also. As an example, we consider every spin Kahler manifold as a totally geodesic submanifold of its twistor space and we study its twisted Killing spinors.
引用
收藏
页码:121 / 130
页数:10
相关论文
共 30 条
[1]   An estimate for the first eigenvalue of the Dirac operator on compact Riemannian spin manifold admitting parallel one-form [J].
Alexandrov, B ;
Grantcharov, G ;
Ivanov, S .
JOURNAL OF GEOMETRY AND PHYSICS, 1998, 28 (3-4) :263-270
[2]  
ALEXANDROV B, ARXIVMATHDG0502536
[3]   LOWER EIGENVALUE ESTIMATES FOR DIRAC OPERATORS [J].
BAR, C .
MATHEMATISCHE ANNALEN, 1992, 293 (01) :39-46
[4]   Extrinsic bounds for eigenvalues of the Dirac operator [J].
Bar, C .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 1998, 16 (06) :573-596
[5]  
BAR C, 1991, THESIS U BOON, V217
[6]  
BAR C, 1993, COMMUN MATH PHYS, V154, P525
[7]  
BAR C, 2003, ARXIVMATHDG0305277
[8]   Spinors in n dimensions [J].
Brauer, R ;
Weyl, H .
AMERICAN JOURNAL OF MATHEMATICS, 1935, 57 :425-449