Aggregation Kinetics of Manganese Dioxide Colloids in Aqueous Solution: Influence of Humic Substances and Biomacromolecules

被引:189
作者
Huangfu, Xiaoliu [1 ]
Jiang, Jin [1 ]
Ma, Jun [1 ]
Liu, Yongze [1 ]
Yang, Jing [1 ]
机构
[1] Harbin Inst Technol, State Key Lab Urban Water Resource & Environm, Sch Municipal & Environm Engn, Harbin 150090, Peoples R China
基金
中国国家自然科学基金;
关键词
NATURAL ORGANIC-MATTER; HEMATITE NANOPARTICLES; FULVIC-ACIDS; PARTICLES; PH; DEPOSITION; MACROMOLECULES; MONOVALENT; STABILITY; FULLERENE;
D O I
10.1021/es4003247
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this work, the early stage aggregation kinetics of manganese dioxide (MnO2) colloids in aqueous solution and the effects of constituents of natural organic matter (i.e., Suwannee River fulvic acid (SRFA), Suwannee River humic acid (SRHA), alginate, and bovine serum albumin (BSA)) were investigated by time-resolved dynamic light scattering. MnO2 colloids were significantly aggregated in the presence of monovalent and divalent cations. The critical coagulation concentrations were 28, 0.8, and 0.45 mM for NaNO3, Mg(NO3)(2), and Ca(NO3)(2), respectively. The Hamaker constant of MnO2 colloids in aqueous solution was 7.84 x 10(-20) J. All the macromolecules tested slowed MnO2 colloidal aggregation rates greatly. The steric repulsive forces, originated from organic layers adsorbed on MnO2 colloidal surfaces, may be mainly responsible for their stabilizing effects. However, the complexes formed by alginate and Ca2+ (>5 mM) might play a bridging role and thus enhanced MnO2 colloidal aggregation instead. These results may be important for assessing the fate and transport of MnO2 colloids and associated contaminants.
引用
收藏
页码:10285 / 10292
页数:8
相关论文
共 48 条
[1]   Aggregation of colloidal silica particles in the presence of fulvic acid, humic acid, or alginate: Effects of ionic composition [J].
Abe, Tsutomu ;
Kobayashi, Satomi ;
Kobayashi, Motoyoshi .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2011, 379 (1-3) :21-26
[2]   Agglomeration and sedimentation of TiO2 nanoparticles in cell culture medium [J].
Allouni, Zouhir E. ;
Cimpan, Mihaela R. ;
Hol, Paul J. ;
Skodvin, Tore ;
Gjerdet, Nils R. .
COLLOIDS AND SURFACES B-BIOINTERFACES, 2009, 68 (01) :83-87
[3]   Conformation and size of humic substances: Effects of major cation concentration and type, pH, salinity, and residence time [J].
Baalousha, M ;
Motelica-Heino, M ;
Le Coustumer, P .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2006, 272 (1-2) :48-55
[4]   Aggregation Kinetics and Transport of Single-Walled Carbon Nanotubes at Low Surfactant Concentrations [J].
Bouchard, Dermont ;
Zhang, Wei ;
Powell, Tremaine ;
Rattanaudompol, U-sa .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2012, 46 (08) :4458-4465
[5]   CHARACTERIZATION OF AQUATIC COLLOIDS AND MACROMOLECULES .1. STRUCTURE AND BEHAVIOR OF COLLOIDAL MATERIAL [J].
BUFFLE, J ;
LEPPARD, GG .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1995, 29 (09) :2169-2175
[6]   Force measurements with the atomic force microscope: Technique, interpretation and applications [J].
Butt, HJ ;
Cappella, B ;
Kappl, M .
SURFACE SCIENCE REPORTS, 2005, 59 (1-6) :1-152
[7]   Aggregation and deposition kinetics of fullerene (C60) nanoparticles [J].
Chen, Kai Loon ;
Elimelech, Menachem .
LANGMUIR, 2006, 22 (26) :10994-11001
[8]   Enhanced aggregation of alginate-coated iron oxide (hematite) nanoparticles in the presence of calcium, strontium, and barium cations [J].
Chen, Kai Loon ;
Mylon, Steven E. ;
Elimelech, Menachem .
LANGMUIR, 2007, 23 (11) :5920-5928
[9]   Relating Colloidal Stability of Fullerene (C60) Nanoparticles to Nanoparticle Charge and Electrokinetic Properties [J].
Chen, Kai Loon ;
Elimelech, Menachem .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2009, 43 (19) :7270-7276
[10]  
Chen KL, 2006, ENVIRON SCI TECHNOL, V40, P1516, DOI 10.1021/es0518068