On the blow up phenomenon of the critical nonlinear Schrodinger equation

被引:106
作者
Keraani, Sahbi [1 ]
机构
[1] Univ Rennes 1, IRMAR, F-35042 Rennes, France
关键词
time dependent Schrodinger equation; blow up; mass concentration;
D O I
10.1016/j.jfa.2005.10.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider the blow up phenomenon of critical nonlinear Schrodinger equations in dimension 1D and 2D. We define the minimal mass as the L-2 norm necessary to ignite a wave collapse and we stress its role in the blow up mechanism. Asymptotic compactness properties and L-2-concentration are proved. The proof relies on linear and nonlinear profile decompositions. (C) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:171 / 192
页数:22
相关论文
共 22 条
[1]   High frequency approximation of solutions to critical nonlinear wave equations [J].
Bahouri, H ;
Gérard, P .
AMERICAN JOURNAL OF MATHEMATICS, 1999, 121 (01) :131-175
[2]  
Bourgain J, 1998, INT MATH RES NOTICES, V1998, P253
[3]  
CARLES R, IN PRESS T AM MATH S
[4]  
CAZENAVE T, 1993, TEXT METOD MAT, V26
[5]   Profile decomposition for solutions of the Navier-Stokes equations [J].
Gallagher, I .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2001, 129 (02) :285-316
[6]   Profile decomposition for the wave equation outside a convex obstacle [J].
Gallagher, I ;
Gérard, P .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2001, 80 (01) :1-49
[7]  
GINIBRE J, 1985, J MATH PURE APPL, V64, P363
[8]   On the defect of compactness for the Strichartz estimates of the Schrodinger equations [J].
Keraani, S .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 175 (02) :353-392
[9]   DETERMINATION OF BLOW-UP SOLUTIONS WITH MINIMAL MASS FOR NONLINEAR SCHRODINGER-EQUATIONS WITH CRITICAL POWER [J].
MERLE, F .
DUKE MATHEMATICAL JOURNAL, 1993, 69 (02) :427-454
[10]  
Merle F, 1998, INT MATH RES NOTICES, V1998, P399