A non-smooth version of the Lojasiewicz-Simon theorem with applications to non-local phase-field systems

被引:38
作者
Feireisl, E
Issard-Roch, F
Petzeltová, H
机构
[1] Acad Sci Czech Republ, Inst Math, CR-11567 Prague 1, Czech Republic
[2] Univ Paris 11, Lab Math Anal Numer & EDP, F-91405 Orsay, France
关键词
Simon-Lojasiewicz theorem; non-local phase field model; convergence to stationary states;
D O I
10.1016/j.jde.2003.10.026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a simple system modelling phase transition phenomena with long term interactions. It is shown that any solution converges with growing time to a single stationary state. To this end, a non-smooth version of the celebrated Simon-Lojasiewicz theorem is proved. (C) 2003 Published by Elsevier Inc.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 20 条
[1]  
[Anonymous], NONLINEAR FUNCTIONAL
[2]   An integrodifferential model for phase transitions: Stationary solutions in higher space dimensions [J].
Bates, PW ;
Chmaj, A .
JOURNAL OF STATISTICAL PHYSICS, 1999, 95 (5-6) :1119-1139
[3]   Traveling waves in a convolution model for phase transitions [J].
Bates, PW ;
Fife, PC ;
Ren, XF ;
Wang, XF .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1997, 138 (02) :105-136
[4]  
BATES PW, 1996, DIFF EQUAT, P14
[5]  
BREZIS H., 1973, North-Holland Math. Stud., V5
[6]  
CAGINALP G, 1986, ARCH RATION MECH AN, V92, P205
[7]  
DIRR N, 2002, SHARP INTERFACE LIMI
[8]  
Feiresl E., 2000, J. Dynam. Differential Equations, V12, P647
[9]  
GAJEWSKI H, 2001, NONLOCAL MODEL NONIS
[10]  
GAJEWSKI H, 2001, NONLOCAL PHASE SEPAR