Fabrication of Sub-Lithography-Limited Structures via Nanomasking Technique for Plasmonic Enhancement Applications

被引:16
作者
Bauman, Stephen J. [1 ,2 ]
Novak, Eric C. [1 ,3 ]
Debu, Desalegn T. [4 ]
Natelson, Douglas [5 ,6 ]
Herzog, Joseph B. [2 ,7 ]
机构
[1] Univ Arkansas, Microelect Photon Program, Fayetteville, AR 72701 USA
[2] Univ Arkansas, Inst Nanosci & Engn, Fayetteville, AR 72701 USA
[3] Shippensburg Univ, Dept Phys, Shippensburg, PA 17257 USA
[4] Univ Arkansas, Dept Phys, Fayetteville, AR 72701 USA
[5] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA
[6] Rice Univ, Dept Elect & Comp Engn, Houston, TX 77005 USA
[7] Univ Arkansas, Dept Phys, Microelect Photon Program, Fayetteville, AR 72701 USA
基金
美国国家科学基金会;
关键词
Electron beam lithography (EBL); lithography; nanofabrication; nanogap; nanoscale; plasmon; sub-10; nm; RAMAN-SPECTROSCOPY; GAPS; NANOSTRUCTURES; NUCLEATION; EMISSION;
D O I
10.1109/TNANO.2015.2457235
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Fabrication of sub-10 nm features is advantageous for continued improvement of plasmonic enhancement applications. This letter demonstrates a technique, called nanomasking, which can fabricate nanostructures and gaps below the resolution limit of the lithography technique used in the process: nanogaps that are less than 10 nm in width, and nanostructures with 15 nm widths. This method improves upon existing techniques for creating metallic features at this scale, and it is also scalable for mass production. Unique structures that can be fabricated with this technique have been optically investigated to provide evidence as to their potential plasmonic applications.
引用
收藏
页码:790 / 793
页数:4
相关论文
共 39 条
[1]  
Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/nmat2629, 10.1038/NMAT2629]
[2]   Thermo-plasmonics: using metallic nanostructures as nano-sources of heat [J].
Baffou, Guillaume ;
Quidant, Romain .
LASER & PHOTONICS REVIEWS, 2013, 7 (02) :171-187
[3]   Polarized Surface-Enhanced Raman Spectroscopy from Molecules Adsorbed in Nano-Gaps Produced by Electromigration in Silver Nanowires [J].
Baik, Jeong Min ;
Lee, Seung Joon ;
Moskovits, Martin .
NANO LETTERS, 2009, 9 (02) :672-676
[4]   Optical nanogap matrices for plasmonic enhancement applications [J].
Bauman, Stephen J. ;
Debu, Desalegn T. ;
Hill, Avery M. ;
Novak, Eric C. ;
Natelson, Douglas ;
Herzog, Joseph B. .
PLASMONICS: METALLIC NANOSTRUCTURES AND THEIR OPTICAL PROPERTIES XII, 2014, 9163
[5]   PROXIMITY EFFECT IN ELECTRON-BEAM LITHOGRAPHY [J].
CHANG, THP .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY, 1975, 12 (06) :1271-1275
[6]   Limiting factors in sub-10 nm scanning-electron-beam lithography [J].
Cord, Bryan ;
Yang, Joel ;
Duan, Huigao ;
Joy, David C. ;
Klingfus, Joseph ;
Berggren, Karl K. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2009, 27 (06) :2616-2621
[7]   Synthesis of Nano- and Micro-Scale Topographies by Combining Colloidal Lithography and Glancing Angle Deposition (GLAD) [J].
Dolatshahi-Pirouz, Alireza ;
Kolind, Kristian ;
Pennisi, Cristian Pablo ;
Duroux, Meg ;
Zachar, Vladimir ;
Foss, Morten ;
Besenbacher, Flemming .
ADVANCED ENGINEERING MATERIALS, 2015, 17 (01) :8-13
[8]   Direct and Reliable Patterning of Plasmonic Nanostructures with Sub-10-nm Gaps [J].
Duan, Huigao ;
Hu, Hailong ;
Kumar, Karthik ;
Shen, Zexiang ;
Yang, Joel K. W. .
ACS NANO, 2011, 5 (09) :7593-7600
[9]   Nanogaps with very large aspect ratios for electrical measurements [J].
Fursina, A. ;
Lee, S. ;
Sofin, R. G. S. ;
Shvets, I. V. ;
Natelson, D. .
APPLIED PHYSICS LETTERS, 2008, 92 (11)
[10]   Solution-based straight and branched CdSe nanowires [J].
Grebinski, JW ;
Hull, KL ;
Zhang, J ;
Kosel, TH ;
Kuno, M .
CHEMISTRY OF MATERIALS, 2004, 16 (25) :5260-5272