Perfect Laplacians for Polygon Meshes

被引:11
作者
Herholz, Philipp [1 ]
Kyprianidis, Jan Eric [1 ]
Alexa, Marc [1 ]
机构
[1] TU Berlin, Berlin, Germany
关键词
D O I
10.1111/cgf.12709
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A discrete Laplace-Beltrami operator is called perfect if it possesses all the important properties of its smooth counterpart. It is known which triangle meshes admit perfect Laplace operators and how to fix any other mesh by changing the combinatorics. We extend the characterization of meshes that admit perfect Laplacians to general polygon meshes. More importantly, we provide an algorithm that computes a perfect Laplace operator for any polygon mesh without changing the combinatorics, although, possibly changing the embedding. We evaluate this algorithm and demonstrate it at applications.
引用
收藏
页码:211 / 218
页数:8
相关论文
共 28 条
[1]   Discrete Laplacians on General Polygonal Meshes [J].
Alexa, Marc ;
Wardetzky, Max .
ACM TRANSACTIONS ON GRAPHICS, 2011, 30 (04)
[2]  
[Anonymous], 1963, Proceedings of the London Mathematical Society
[3]  
[Anonymous], 2007, Proceedings of the Fifth Eurographics Symposium on Geometry Processing, DOI [10.2312/SGP/SGP07/033-037, DOI 10.2312/SGP/SGP07/033-037]
[4]  
[Anonymous], 1976, Differential Geometry of Curves and Surfaces
[5]  
[Anonymous], 1993, Experiment. Math., DOI [10.1080/10586458.1993.10504266, DOI 10.1080/10586458.1993.10504266]
[6]   A CRITERION FOR THE AFFINE EQUIVALENCE OF CELL COMPLEXES IN RD AND CONVEX POLYHEDRA IN RD+1 [J].
AURENHAMMER, F .
DISCRETE & COMPUTATIONAL GEOMETRY, 1987, 2 (01) :49-64
[7]   A discrete Laplace-Beltrami operator for simplicial surfaces [J].
Bobenko, Alexander I. ;
Springborn, Boris A. .
DISCRETE & COMPUTATIONAL GEOMETRY, 2007, 38 (04) :740-756
[8]   On linear variational surface deformation methods [J].
Botsch, Mario ;
Sorkine, Olga .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2008, 14 (01) :213-230
[9]   Shape Google: Geometric Words and Expressions for Invariant Shape Retrieval [J].
Bronstein, Alexander M. ;
Bronstein, Michael M. ;
Guibas, Leonidas J. ;
Ovsjanikov, Maks .
ACM TRANSACTIONS ON GRAPHICS, 2011, 30 (01)
[10]  
de Goes F., 2014, ACM T GRAPHIC, V33