Automating Ischemic Stroke Subtype Classification Using Machine Learning and Natural Language Processing

被引:94
作者
Garg, Ravi [1 ]
Oh, Elissa [1 ]
Naidech, Andrew [1 ]
Kording, Konrad [2 ]
Prabhakaran, Shyam [3 ]
机构
[1] Northwestern Univ, Feinberg Sch Med, Dept Neurol, 633 St Clair St 2041, Chicago, IL 60611 USA
[2] Univ Penn, Philadelphia, PA 19104 USA
[3] Univ Chicago, Pritzker Sch Med, Dept Neurol, Chicago, IL 60611 USA
关键词
Ischemic stroke; cryptogenic; cardioembolism; natural language processing; machine learning; ETIOLOGIC CLASSIFICATION; CAUSATIVE CLASSIFICATION; TOAST; MECHANISM; CCS;
D O I
10.1016/j.jstrokecerebrovasdis.2019.02.004
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Objective: The manual adjudication of disease classification is time-consuming, error-prone, and limits scaling to large datasets. In ischemic stroke (IS), subtype classification is critical for management and outcome prediction. This study sought to use natural language processing of electronic health records (EHR) combined with machine learning methods to automate IS subtyping. Methods: Among IS patients from an observational registry with TOAST subtyping adjudicated by board-certified vascular neurologists, we analyzed unstructured text-based EHR data including neurology progress notes and neuroradiology reports using natural language processing. We performed several feature selection methods to reduce the high dimensionality of the features and 5-fold cross validation to test generalizability of our methods and minimize overfitting. We used several machine learning methods and calculated the kappa values for agreement between each machine learning approach to manual adjudication. We then performed a blinded testing of the best algorithm against a held-out subset of 50 cases. Results: Compared to manual classification, the best machine-based classification achieved a kappa of .25 using radiology reports alone, .57 using progress notes alone, and .57 using combined data. Kappa values varied by subtype being highest for cardioembolic (.64) and lowest for cryptogenic cases (.47). In the held-out test subset, machine-based classification agreed with rater classification in 40 of 50 cases (kappa .72). Conclusions: Automated machine learning approaches using textual data from the EHR shows agreement with manual TOAST classification. The automated pipeline, if externally validated, could enable large-scale stroke epidemiology research.
引用
收藏
页码:2045 / 2051
页数:7
相关论文
共 27 条
[1]   Principal component analysis [J].
Abdi, Herve ;
Williams, Lynne J. .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2010, 2 (04) :433-459
[2]   CLASSIFICATION OF SUBTYPE OF ACUTE ISCHEMIC STROKE - DEFINITIONS FOR USE IN A MULTICENTER CLINICAL-TRIAL [J].
ADAMS, HP ;
BENDIXEN, BH ;
KAPPELLE, LJ ;
BILLER, J ;
LOVE, BB ;
GORDON, DL ;
MARSH, EE ;
KASE, CS ;
WOLF, PA ;
BABIKIAN, VL ;
LICATAGEHR, EE ;
ALLEN, N ;
BRASS, LM ;
FAYAD, PB ;
PAVALKIS, FJ ;
WEINBERGER, JM ;
TUHRIM, S ;
RUDOLPH, SH ;
HOROWITZ, DR ;
BITTON, A ;
MOHR, JP ;
SACCO, RL ;
CLAVIJO, M ;
ROSENBAUM, DM ;
SPARR, SA ;
KATZ, P ;
KLONOWSKI, E ;
CULEBRAS, A ;
CAREY, G ;
MARTIR, NI ;
FICARRA, C ;
HOGAN, EL ;
CARTER, T ;
GURECKI, P ;
MUNTZ, BK ;
RAMIREZLASSEPAS, M ;
TULLOCH, JW ;
QUINONES, MR ;
MENDEZ, M ;
ZHANG, SM ;
ALA, T ;
JOHNSTON, KC ;
ANDERSON, DC ;
TARREL, RM ;
NANCE, MA ;
BUDLIE, SR ;
DIERICH, M ;
HELGASON, CM ;
HIER, DB ;
SHAPIRO, RA .
STROKE, 1993, 24 (01) :35-41
[3]   A Natural Language Processing Framework for Assessing Hospital Readmissions for Patients With COPD [J].
Agarwal, Ankur ;
Baechle, Christopher ;
Behara, Ravi ;
Zhu, Xingquan .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2018, 22 (02) :588-596
[4]   The ASCOD Phenotyping of Ischemic Stroke (Updated ASCO Phenotyping) [J].
Amarenco, P. ;
Bogousslavsky, J. ;
Caplan, R. ;
Donnan, G. A. ;
Wolf, M. E. ;
Hennerici, M. G. .
CEREBROVASCULAR DISEASES, 2013, 36 (01) :1-5
[5]   A computerized algorithm for etiologic classification of ischemic stroke - The causative classification of stroke system [J].
Ay, Hakan ;
Benner, Thomas ;
Arsava, E. Murat ;
Furie, Karen L. ;
Singhal, Aneesh B. ;
Jensen, Matt B. ;
Ayata, Cenk ;
Towfighi, Amytis ;
Smith, Eric E. ;
Chong, Ji Y. ;
Koroshetz, Walter J. ;
Sorensen, A. Gregory .
STROKE, 2007, 38 (11) :2979-2984
[6]  
Benjamin EJ, 2017, CIRCULATION, V135, pE146, DOI [10.1161/CIR.0000000000000485, 10.1161/CIR.0000000000000558, 10.1161/CIR.0000000000000530]
[7]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[8]   Natural Language Processing Technologies in Radiology Research and Clinical Applications [J].
Cai, Tianrun ;
Giannopoulos, Andreas A. ;
Yu, Sheng ;
Kelil, Tatiana ;
Ripley, Beth ;
Kumamaru, Kanako K. ;
Rybicki, Frank J. ;
Mitsouras, Dimitrios .
RADIOGRAPHICS, 2016, 36 (01) :176-191
[9]  
CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411
[10]  
DEERWESTER S, 1990, J AM SOC INFORM SCI, V41, P391, DOI 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO