Materials challenges for SrRuO3: From conventional to quantum electronics

被引:14
作者
Cuoco, M. [1 ]
Di Bernardo, A. [2 ]
机构
[1] Univ Salerno, CNR SPIN, I-84084 Salerno, Italy
[2] Univ Konstanz, Dept Phys, D-78457 Constance, Germany
基金
欧盟地平线“2020”;
关键词
All Open Access; Gold; Green;
D O I
10.1063/5.0100912
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The need for faster and more miniaturized electronics is challenging scientists to develop novel forms of electronics based on quantum degrees of freedom different from electron charge. In this fast-developing field, often referred to as quantum electronics, the metal-oxide perovskite SrRuO3 can play an important role thanks to its diverse physical properties, which have been intensively investigated, mostly for conventional electronics. In addition to being chemically stable, easy to fabricate with high quality and to grow epitaxially onto many oxides-these are all desirable properties also for conventional electronics-SrRuO3 has interesting properties for quantum electronics like itinerant ferromagnetism and metallic behavior, strong correlation between magnetic anisotropy and spin-orbit coupling, strain-tunable magnetization, and anomalous Hall and Berry effects. In this Perspective, after describing the main phenomena emerging from the interplay between spin, orbital, lattice, and topological quantum degrees of freedom in SrRuO3, we discuss the challenges still open to achieve control over these phenomena. We then provide our perspectives on the most promising applications of SrRuO3 for devices for conventional and quantum electronics. We suggest new device configurations and discuss the materials challenges for their realization. For conventional electronics, we single out applications where SrRuO3 devices can bring competitive advantages over existing ones. For quantum electronics, we propose devices that can help gain a deeper understanding of quantum effects in SrRuO3 to exploit them for quantum technologies. We finally give an outlook about properties of SrRuO3 still waiting for discovery and applications that may stem from them. (c) 2022 Author(s).
引用
收藏
页数:28
相关论文
共 239 条
[1]   Ferroelectric field effect in ultrathin SrRuO3 films [J].
Ahn, CH ;
Hammond, RH ;
Geballe, TH ;
Beasley, MR ;
Triscone, JM ;
Decroux, M ;
Fischer, O ;
Antognazza, L ;
Char, K .
APPLIED PHYSICS LETTERS, 1997, 70 (02) :206-208
[2]   Exchange bias using a spin glass [J].
Ali, Mannan ;
Adie, Patrick ;
Marrows, Christopher H. ;
Greig, Denis ;
Hickey, Bryan J. ;
Stamps, Robert L. .
NATURE MATERIALS, 2007, 6 (01) :70-75
[3]  
[Anonymous], 2020, APL Mater., V8
[4]  
[Anonymous], 2010, Physics, V3, P36
[5]   JOSEPHSON COUPLING OF YBA2CU3O7-X THROUGH A FERROMAGNETIC BARRIER SRRUO3 [J].
ANTOGNAZZA, L ;
CHAR, K ;
GEBALLE, TH ;
KING, LLH ;
SLEIGHT, AW .
APPLIED PHYSICS LETTERS, 1993, 63 (07) :1005-1007
[6]   Observation of superconducting gap spectra of long-range proximity effect in Au/SrTiO3/SrRuO3/Sr2RuO4 tunnel junctions [J].
Anwar, M. S. ;
Kunieda, M. ;
Ishiguro, R. ;
Lee, S. R. ;
Olthof, L. A. B. Olde ;
Robinson, J. W. A. ;
Yonezawa, S. ;
Noh, T. W. ;
Maeno, Y. .
PHYSICAL REVIEW B, 2019, 100 (02)
[7]   Direct penetration of spin-triplet superconductivity into a ferromagnet in Au/SrRuO3/Sr2RuO4 junctions [J].
Anwar, M. S. ;
Lee, S. R. ;
Ishiguro, R. ;
Sugimoto, Y. ;
Tano, Y. ;
Kang, S. J. ;
Shin, Y. J. ;
Yonezawa, S. ;
Manske, D. ;
Takayanagi, H. ;
Noh, T. W. ;
Maeno, Y. .
NATURE COMMUNICATIONS, 2016, 7
[8]  
Anwar S., 2015, Appl. Phys. Express, V8
[9]   Magnetic properties of planar nanowire arrays of Co fabricated on oxidized step-bunched silicon templates [J].
Arora, S. K. ;
O'Dowd, B. J. ;
Ballesteros, B. ;
Gambardella, P. ;
Shvets, I. V. .
NANOTECHNOLOGY, 2012, 23 (23)
[10]   Evidence for crossed Andreev reflections in bilayers of (100) YBa2Cu3O7-δ and the itinerant ferromagnet SrRuO3 [J].
Asulin, Itay ;
Yuli, Ofer ;
Koren, Gad ;
Millo, Oded .
PHYSICAL REVIEW B, 2006, 74 (09)