Influence of strain-specific parameters on hydrothermal liquefaction of microalgae

被引:102
作者
Barreiro, Diego Lopez [1 ]
Zamalloa, Carlos [2 ]
Boon, Nico [2 ]
Vyverman, Wim [3 ]
Ronsse, Frederik [1 ]
Brilman, Wim [4 ]
Prins, Wolter [1 ]
机构
[1] Univ Ghent, Fac Biosci Engn, Dept Biosyst Engn, B-9000 Ghent, Belgium
[2] Univ Ghent, Lab Microbial Ecol & Technol LabMET, B-9000 Ghent, Belgium
[3] Univ Ghent, B-9000 Ghent, Belgium
[4] Univ Twente, Fac Sci & Technol, NL-7500 AE Enschede, Netherlands
关键词
Microalgae; Hydrothermal liquefaction; Biofuel production; SUPERCRITICAL WATER; BIOFUEL PRODUCTION; BIO-OIL; BIOMASS; TECHNOLOGIES; GASIFICATION; FEEDSTOCKS; CHEMICALS; BIODIESEL; FUELS;
D O I
10.1016/j.biortech.2013.07.123
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Algae are an interesting feedstock for producing biofuel via hydrothermal liquefaction (HTL), due to their high water content. In this study, algae slurries (5-7 wt% daf) from different species were liquefied at 250 and 375 degrees C in batch autoclaves during 5 min. The aim was to analyze the influence of strain-specific parameters (cell structure, biochemical composition and growth environment) on the HTL process. Results show big variations in the biocrude oil yield within species at 250 degrees C (from 17.6 to 44.8 wt%). At 375 degrees C, these differences become less significant (from 45.6 to 58.1 wt%). An appropriate characterization of feedstock appeared to be critical to interpret the results. If a high conversion of microalgae-to-biocrude is pursued, near critical conditions are required, with Scenedesmus almeriensis (freshwater) and Nannochloropsis gaditana (marine) leading to the biocrude oils with lower nitrogen content from each growth environment. (c) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:463 / 471
页数:9
相关论文
共 35 条
[1]  
Andersen R A, 2005, ALGAL CULTURING TECH
[2]  
[Anonymous], 2013, HDB HYDROTHERMAL TEC
[3]   PRECIPITATION OF SODIUM-CHLORIDE AND SODIUM-SULFATE IN WATER FROM SUB- TO SUPERCRITICAL CONDITIONS - 150 TO 550-DEGREES-C, 100 TO 300 BAR [J].
ARMELLINI, FJ ;
TESTER, JW ;
HONG, GT .
JOURNAL OF SUPERCRITICAL FLUIDS, 1994, 7 (03) :147-158
[4]   Hydrothermal liquefaction (HTL) of microalgae for biofuel production: State of the art review and future prospects [J].
Barreiro, Diego Lopez ;
Prins, Wolter ;
Ronsse, Frederik ;
Brilman, Wim .
BIOMASS & BIOENERGY, 2013, 53 :113-127
[5]   Catalytic hydrothermal processing of microalgae: Decomposition and upgrading of lipids [J].
Biller, P. ;
Riley, R. ;
Ross, A. B. .
BIORESOURCE TECHNOLOGY, 2011, 102 (07) :4841-4848
[6]   Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content [J].
Biller, P. ;
Ross, A. B. .
BIORESOURCE TECHNOLOGY, 2011, 102 (01) :215-225
[7]   Hydrothermal Liquefaction and Gasification of Nannochloropsis sp. [J].
Brown, Tylisha M. ;
Duan, Peigao ;
Savage, Phillip E. .
ENERGY & FUELS, 2010, 24 (06) :3639-3646
[8]   Biodiesel from microalgae [J].
Chisti, Yusuf .
BIOTECHNOLOGY ADVANCES, 2007, 25 (03) :294-306
[9]   The story of phosphorus: Global food security and food for thought [J].
Cordell, Dana ;
Drangert, Jan-Olof ;
White, Stuart .
GLOBAL ENVIRONMENTAL CHANGE-HUMAN AND POLICY DIMENSIONS, 2009, 19 (02) :292-305
[10]  
Duan P., 2013, FUEL, DOI DOI 10.1016/J.FUE1.2012.12.074>