Effect of reduced graphene oxide-silica composite in polyaniline: electrode material for high-performance supercapacitor

被引:51
作者
Male, Umashankar [1 ]
Uppugalla, Susmitha [1 ]
Srinivasan, Palaniappan [1 ]
机构
[1] CSIR, Indian Inst Chem Technol, Polymers & Funct Mat Div, Hyderabad 500007, Telangana, India
关键词
Ternary composite; Reduced graphene-oxide-silica-polyaniline; Supercapacitor; Button cell; Intercalation of polyaniline; ELECTROCHEMICAL SUPERCAPACITORS; NICKEL ELECTRODES; POLYMERIZATION; NANOCOMPOSITES; HYBRIDS; FILM;
D O I
10.1007/s10008-015-2978-5
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
In order to improve the pseudocapacitance properties and cycle stability of polyaniline (PANI), reduced graphene oxide-silica (rGOS) is used to modify the polyaniline material. Ternary composites of reduced graphene oxide-silica-polyaniline (rGOSP) are prepared by chemical polymerization of aniline using ammonium persulfate oxidant with various amounts of rGOS in aq. 1 M H2SO4 solution. Morphology analysis of rGOSP composite revealed that the nano fibers form of polyaniline is intercalated in the graphene layers and also covered the rGOS. Symmetric supercapacitor cell is fabricated in CR2032 coin cell with rGOSP composite as electrode and its electrochemical performance is evaluated from cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy techniques. rGOSP composite yielded a higher capacitance and lower ESR value compared to that of its individual components, PANI and rGOS. The energy density of the composite is found to be 10 W h kg(-1) at a power density of 2310 W kg(-1). Furthermore, over 75.2 % of the original capacitance is retained after 6000 galvanostatic charge-discharge cycles at 0.8 A g(-1).
引用
收藏
页码:3381 / 3388
页数:8
相关论文
共 31 条
[1]   Graphene electrochemistry: an overview of potential applications [J].
Brownson, Dale A. C. ;
Banks, Craig E. .
ANALYST, 2010, 135 (11) :2768-2778
[2]   Ultracapacitors: why, how, and where is the technology [J].
Burke, A .
JOURNAL OF POWER SOURCES, 2000, 91 (01) :37-50
[3]   Single-Layered Graphene Oxide Nanosheet/Polyaniline Hybrids Fabricated Through Direct Molecular Exfoliation [J].
Chen, Guan-Liang ;
Shau, Shi-Min ;
Juang, Tzong-Yuan ;
Lee, Rong-Ho ;
Chen, Chih-Ping ;
Suen, Shing-Yi ;
Jeng, Ru-Jong .
LANGMUIR, 2011, 27 (23) :14563-14569
[4]   Synthesis and Characterization of Self-Assembled Polyaniline Nanotubes/Silica Nanocomposites [J].
Ciric-Marjanovic, Gordana ;
Dragicevic, Ljiljana ;
Milojevic, Maja ;
Mojovic, Milos ;
Mentus, Slavko ;
Dojcinovic, Biljana ;
Marjanovic, Budimir ;
Stejskal, Jaroslav .
JOURNAL OF PHYSICAL CHEMISTRY B, 2009, 113 (20) :7116-7127
[5]   Studies on the performances of silica aerogel electrodes for the application of supercapacitor [J].
Du, Xuan ;
Wang, Chengyang ;
Li, Tongqi ;
Chen, Mingming .
IONICS, 2009, 15 (05) :561-565
[6]   Synthesis of a graphene/polyaniline/MCM-41 nanocomposite and its application as a supercapacitor [J].
Feng, Xiaomiao ;
Yan, Zhenzhen ;
Chen, Ningna ;
Zhang, Yu ;
Liu, Xingfen ;
Ma, Yanwen ;
Yang, Xiaoyan ;
Hou, Wenhua .
NEW JOURNAL OF CHEMISTRY, 2013, 37 (07) :2203-2209
[7]   Polyaniline-based nickel electrodes for electrochemical supercapacitors - Influence of Triton X-100 [J].
Girija, T. C. ;
Sangaranarayanan, M. V. .
JOURNAL OF POWER SOURCES, 2006, 159 (02) :1519-1526
[8]   Analysis of polyaniline-based nickel electrodes for electrochemical supercapacitors [J].
Girija, T. C. ;
Sangaranarayanan, M. V. .
JOURNAL OF POWER SOURCES, 2006, 156 (02) :705-711
[9]   Polyaniline nanofibers obtained by interfacial polymerization for high-rate supercapacitors [J].
Guan, Hui ;
Fan, Li-Zhen ;
Zhang, Hongchang ;
Qu, Xuanhui .
ELECTROCHIMICA ACTA, 2010, 56 (02) :964-968
[10]   Synthesis and characterization of graphene-mesoporous silica nanoparticle hybrids [J].
Guardia, L. ;
Suarez-Garcia, F. ;
Paredes, J. I. ;
Solis-Fernandez, P. ;
Rozada, R. ;
Fernandez-Merino, M. J. ;
Martinez-Alonso, A. ;
Tascon, J. M. D. .
MICROPOROUS AND MESOPOROUS MATERIALS, 2012, 160 :18-24