Two quantitative measures of inlier distributions for precise fundamental matrix estimation

被引:10
作者
Seo, JK
Hong, HK
Jho, CW
Choi, MH
机构
[1] Chung Ang Univ, Dept Image Engn, Grad Sch Adv Imaging Sci Multimedia & Film, Dongjak Ku, Seoul 156756, South Korea
[2] Univ Colorado, Dept Comp Sci & Engn, Denver, CO 80202 USA
关键词
stereo vision; fundamental matrix; epipolar geometry; correspondence; inlier set;
D O I
10.1016/j.patrec.2004.01.014
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Because the estimation of a fundamental matrix is much dependent on the correspondence, it is important to select a proper inlier set that represents variation of the image due to camera motion. Previous studies showed that a more precise fundamental matrix can be obtained if the evenly distributed points are selected. When the inliers are detected, however, no previous methods have taken into account their distribution. This paper presents two novel approaches to estimate the fundamental matrix by considering the inlier distribution. The proposed algorithms divide an entire image into several sub-regions, and then examine the number of the inliers in each sub-region and the area of each region. In our method, the standard deviations are used as quantitative measures to select a proper inlier set. The simulation results on synthetic and real images show that our consideration of the inlier distribution can achieve a more precise estimation of the fundamental matrix. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:733 / 741
页数:9
相关论文
共 50 条
  • [1] ROBUST ESTIMATION OF THE FUNDAMENTAL MATRIX
    Zhou, Huiyu
    Schaefer, Gerald
    2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2010, : 4233 - 4236
  • [2] Fundamental matrix estimation A study of error criteria
    Fathy, Mohammed E.
    Hussein, Ashraf S.
    Tolba, Mohammed F.
    PATTERN RECOGNITION LETTERS, 2011, 32 (02) : 383 - 391
  • [3] A fast and robust method for fundamental matrix estimation
    Yan K.
    Liu E.-H.
    Zhao R.-J.
    Tian H.
    Zhang Z.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2018, 26 (02): : 461 - 470
  • [4] Overall view regarding fundamental matrix estimation
    Armangué, X
    Salvi, J
    IMAGE AND VISION COMPUTING, 2003, 21 (02) : 205 - 220
  • [5] Deep Fundamental Matrix Estimation Without Correspondences
    Poursaeed, Omid
    Yang, Guandao
    Prakash, Aditya
    Fang, Qiuren
    Jiang, Hanqing
    Hariharan, Bharath
    Belongie, Serge
    COMPUTER VISION - ECCV 2018 WORKSHOPS, PT III, 2019, 11131 : 485 - 497
  • [6] Fast and Robust Algorithm for Fundamental Matrix Estimation
    Zhang, Ming
    Wang, Guanghui
    Chao, Haiyang
    Wu, Fuchao
    IMAGE ANALYSIS AND RECOGNITION (ICIAR 2015), 2015, 9164 : 316 - 322
  • [7] Deep Fundamental Matrix Estimation
    Ranftl, Rene
    Koltun, Vladlen
    COMPUTER VISION - ECCV 2018, PT I, 2018, 11205 : 292 - 309
  • [8] RES-Q: Robust Outlier Detection Algorithm for Fundamental Matrix Estimation
    Bharati, Sushil Pratap
    Cen, Feng
    Sharda, Ajay
    Wang, Guanghui
    IEEE ACCESS, 2018, 6 : 48664 - 48674
  • [9] Nonlinear Estimation of the Fundamental Matrix with Only Five Unknowns
    de Franca, J. A.
    Stemmer, M. R.
    Franca, M. B. de M.
    IEEE LATIN AMERICA TRANSACTIONS, 2014, 12 (04) : 783 - 791
  • [10] Fundamental matrix estimation using generalized least squares
    Zhou, HY
    Green, PR
    Wallace, AA
    Xu, SD
    PROCEEDINGS OF THE FOURTH IASTED INTERNATIONAL CONFERENCE ON VISUALIZATION, IMAGING, AND IMAGE PROCESSING, 2004, : 263 - 268