Bax inhibitor-1 protects neurons from oxygen-glucose deprivation

被引:20
|
作者
Dohm, Christoph P.
Siedenberg, Sandra
Liman, Jan
Esposito, Alessandro
Wouters, Fred S.
Reed, John C.
Baehr, Mathias
Kermer, Pawel [1 ]
机构
[1] Univ Gottingen, Dept Neurol, D-37075 Gottingen, Germany
[2] Univ Gottingen, Cell Biophys Grp, European Neurosci Inst, D-37075 Gottingen, Germany
[3] Burnham Inst, La Jolla, CA 92037 USA
关键词
Bax inhibitor-1; neuronal apoptosis; endoplasmic reticulum; oxygen-glucose deprivation; neuroprotection; rat CSM14.1 cells; human SH-SY5Y cells;
D O I
10.1385/JMN:29:1:1
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Bax ihibitor-1 (BI-1) has been characterized as an inhibitor of Bax-induced cell death in plants and various mammalian cell systems. To explore the function of BI-1 in neurons, we overexpressed BI-1 tagged to HA or GFP in rat nigral CSM14.1 and human SH-SY5Y neuroblastoma cells. Stable BI-1 expression proved marked protection from cell death induced by thapsigargine, a stress agent blocking the Call-ATPase of the endoplasmic reticulum (ER) but failed to inhibit cell death induced by staurosporine, a kinase inhibitor initiating mitochondria-dependent apoptosis. Moreover, BI-1 was neuroprotective in a paradigm mimicking ischemia, namely oxygen-glucose as well as serum deprivation. Examination of the subcellular distribution revealed that BI-1 predominantly locates to the ER and nuclear envelope but not mitochondria. Taken together, BI-1 overexpression in the ER is protective in neurons, making BI-1 an interesting target for future studies aiming at the inhibition of neuronal cell death during neurodegenerative diseases and stroke.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 50 条
  • [1] Bax inhibitor-1 protects neurons from oxygen-glucose deprivation
    Christoph P. Dohm
    Sandra Siedenberg
    Jan Liman
    Alessandro Esposito
    Fred S. Wouters
    John C. Reed
    Mathias Bähr
    Pawel Kermer
    Journal of Molecular Neuroscience, 2006, 29 : 1 - 8
  • [2] The phosphatase inhibitor, okadaic acid, strongly protects primary rat cortical neurons from lethal oxygen-glucose deprivation
    Atkinson, Trevor
    Whitfield, James
    Chakravarthy, Balu
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2009, 378 (03) : 394 - 398
  • [3] Daphnetin protects hippocampal neurons from oxygen-glucose deprivation-induced injury
    Zhi, Jin
    Duan, Bin
    Pei, Jiwen
    Wu, Songdi
    Wei, Junli
    JOURNAL OF CELLULAR BIOCHEMISTRY, 2019, 120 (03) : 4132 - 4139
  • [4] Astrocyte Autophagy Flux Protects Neurons Against Oxygen-Glucose Deprivation and Ischemic/Reperfusion Injury
    Liu, Xue
    Tian, Fengfeng
    Wang, Shiquan
    Wang, Feng
    Xiong, Lize
    REJUVENATION RESEARCH, 2018, 21 (05) : 405 - 415
  • [5] A natural diarylheptanoid protects cortical neurons against oxygen-glucose deprivation-induced autophagy and apoptosis
    Shi, Qiaoyun
    Zhang, Qinghua
    Peng, Yinghui
    Zhang, Xiaoqi
    Wang, Ying
    Shi, Lei
    JOURNAL OF PHARMACY AND PHARMACOLOGY, 2019, 71 (07) : 1110 - 1118
  • [6] Angiopoietin-1 protects neurons by inhibiting autophagy after neuronal oxygen-glucose deprivation/recovery injury
    Yin, Zhaoyang
    Gong, Ge
    Zhu, Chao
    Wang, Bin
    Sun, Chao
    Liu, Xinhui
    Yin, Jian
    NEUROREPORT, 2020, 31 (11) : 825 - 832
  • [7] Resveratrol pretreatment protects neurons from oxygen-glucose deprivation/reoxygenation and ischemic injury through inhibiting ferroptosis
    Zhu, Huimin
    Huang, Jiagui
    Chen, Yue
    Li, Xuemei
    Wen, Jun
    Tian, Mingfen
    Ren, Jiangxia
    Zhou, Li
    Yang, Qin
    BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, 2022, 86 (06) : 704 - 716
  • [8] Knockdown of TRIM32 Protects Hippocampal Neurons from Oxygen-Glucose Deprivation-Induced Injury
    Wei, Liang
    Zhang, Jian-shui
    Ji, Sheng-feng
    Xu, Hao
    Zhao, Zhao-hua
    Zhang, Li
    Pang, Long
    Zhang, Jun-feng
    Yang, Peng-bo
    Ma, Hai
    NEUROCHEMICAL RESEARCH, 2019, 44 (09) : 2182 - 2189
  • [9] Endogenous insulin signaling protects cultured neurons from oxygen-glucose deprivation-induced cell death
    Mielke, J. G.
    Taghibiglou, C.
    Wang, Y. T.
    NEUROSCIENCE, 2006, 143 (01) : 165 - 173
  • [10] Sulforaphane protects primary cultures of cortical neurons against injury induced by oxygen-glucose deprivation/reoxygenation via antiapoptosis
    Wu, Xuemei
    Zhao, Jing
    Yu, Shanshan
    Chen, Yanlin
    Wu, Jingxian
    Zhao, Yong
    NEUROSCIENCE BULLETIN, 2012, 28 (05) : 509 - 516