Self-avoiding walk, spin systems and renormalization

被引:10
作者
Slade, Gordon [1 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2019年 / 475卷 / 2221期
基金
加拿大自然科学与工程研究理事会;
关键词
self-avoiding walk; phi(4) model; renormalization; critical exponent; FINITE-RANGE DECOMPOSITION; LONG-RANGE; CRITICAL EXPONENTS; LOGARITHMIC CORRECTIONS; CRITICAL-BEHAVIOR; RIGOROUS CONTROL; FIELD BEHAVIOR; O(N) MODELS; SUSCEPTIBILITY; CONVERGENCE;
D O I
10.1098/rspa.2018.0549
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The self-avoiding walk, and lattice spin systems such as the phi(4) model, are models of interest both in mathematics and in physics. Many of their important mathematical problems remain unsolved, particularly those involving critical exponents. We survey some of these problems, and report on recent advances in their mathematical understanding via a rigorous non-perturbative renormalization group method.
引用
收藏
页数:21
相关论文
共 64 条
[1]  
Abdesselam A., 2013, RIGOROUS QUANTUM FIE
[2]   A complete renormalization group trajectory between two fixed points [J].
Abdesselam, Abdelmalek .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 276 (03) :727-772
[3]   GEOMETRIC ANALYSIS OF PHI-4 FIELDS AND ISING-MODELS .1.2. [J].
AIZENMAN, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 86 (01) :1-48
[4]  
[Anonymous], 1993, The Self-Avoiding Walk
[5]  
Bauerschmidt R, 2018, INTRO RENORMALISATIO
[6]  
Bauerschmidt R, 2017, ANN HENRI POINCARE, V18, P375, DOI 10.1007/s00023-016-0499-0
[7]   Critical Two-Point Function of the 4-Dimensional Weakly Self-Avoiding Walk [J].
Bauerschmidt, Roland ;
Brydges, David C. ;
Slade, Gordon .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 338 (01) :169-193
[8]   Logarithmic Correction for the Susceptibility of the 4-Dimensional Weakly Self-Avoiding Walk: A Renormalisation Group Analysis [J].
Bauerschmidt, Roland ;
Brydges, David C. ;
Slade, Gordon .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 337 (02) :817-877
[9]   A Renormalisation Group Method. III. Perturbative Analysis [J].
Bauerschmidt, Roland ;
Brydges, David C. ;
Slade, Gordon .
JOURNAL OF STATISTICAL PHYSICS, 2015, 159 (03) :492-529
[10]  
Bauerschmidt R, 2014, J STAT PHYS, V157, P692, DOI 10.1007/s10955-014-1060-5