Atmospheric pressure microwave microplasma microorganism deactivation

被引:15
作者
Czylkowski, D. [1 ]
Hrycak, B. [1 ]
Jasinski, M. [1 ]
Dors, M. [1 ]
Mizeraczyk, J. [1 ,2 ]
机构
[1] Polish Acad Sci, Ctr Plasma & Laser Engn, Szewalski Inst Fluid Flow Machinery, PL-80952 Gdansk, Poland
[2] Gdynia Maritime Univ, Dept Marine Elect, PL-81225 Gdynia, Poland
关键词
Microwave plasma; Atmospheric pressure plasma; Microplasma; Decontamination; Sterilization; MICROSTRIP TECHNOLOGY; PLASMA STERILIZATION; INACTIVATION; DISCHARGE; JET; GENERATION;
D O I
10.1016/j.surfcoat.2013.04.010
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This paper is focused on the experimental investigations of microorganism decontamination by using low temperature Ar and Ar/O-2 microwave microplasma. Microplasma in the form of a microflame was generated using a simple coaxial microwave microplasma source (MmPS). The MmPS was operated at standard microwave frequency of 2.45 GHz. The electron density, microplasma temperatures and active species identification were determined on the way of Optical Emission Spectroscopy. The results of the spectroscopic measurements confirmed the MmPS usefulness in biomedical applications. The microplasma deactivation concerned two types of bacteria (Escherichia coli, Bacillus subtilis) and one fungus (Aspergillus niger). The investigations involved influence of the O-2 concentration, absorbed microwave power, microplasma treatment time and microplasma distance from the treated sample on the microorganism deactivation efficiency. All reported results were obtained for Ar and Ar/O-2 microplasma with gas flow rates of single l/min and O-2 admixture not exceeding 2%. The absorbed microwave power was up to 50 W. The sample treatment time was up to 10 s. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:114 / 119
页数:6
相关论文
共 41 条
[1]  
Antoniu A., 2012, P ESA 2012 JOINT EL
[2]   Environmental and biological applications of microplasmas [J].
Becker, K ;
Koutsospyros, A ;
Yin, SM ;
Christodoulatos, C ;
Abramzon, N ;
Joaquin, JC ;
Brelles-Mariño, G .
PLASMA PHYSICS AND CONTROLLED FUSION, 2005, 47 :B513-B523
[3]   Microplasmas and applications [J].
Becker, KH ;
Schoenbach, KH ;
Eden, JG .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2006, 39 (03) :R55-R70
[4]   Phase resolved optical emission spectroscopy of coaxial microplasma jet operated with He and Ar [J].
Benedikt, J. ;
Hofmann, S. ;
Knake, N. ;
Boettner, H. ;
Reuter, R. ;
von Keudell, A. ;
Schulz-von der Gathen, V. .
EUROPEAN PHYSICAL JOURNAL D, 2010, 60 (03) :539-546
[5]   A new low-power microwave plasma source using microstrip technology for atomic emission spectrometry [J].
Bilgic, AM ;
Engel, U ;
Voges, E ;
Kückelheim, M ;
Broekaert, JAC .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2000, 9 (01) :1-4
[6]   Gas discharge plasmas and their applications [J].
Bogaerts, A ;
Neyts, E ;
Gijbels, R ;
van der Mullen, J .
SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2002, 57 (04) :609-658
[7]   Microwave-excited atmospheric-pressure microplasmas based on a coaxial transmission line resonator [J].
Choi, J. ;
Iza, F. ;
Do, H. J. ;
Lee, J. K. ;
Cho, M. H. .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2009, 18 (02)
[8]   Cold Plasma Inactivation of Bacillus cereus and Bacillus anthracis (Anthrax) Spores [J].
Dobrynin, Danil ;
Fridman, Gregory ;
Mukhin, Yurii V. ;
Wynosky-Dolfi, Meghan A. ;
Rieger, Judy ;
Rest, Richard F. ;
Gutsol, Alexander F. ;
Fridman, Alexander .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2010, 38 (08) :1878-1884
[9]   Low temperature atmospheric pressure plasma sources for microbial decontamination [J].
Ehlbeck, J. ;
Schnabel, U. ;
Polak, M. ;
Winter, J. ;
von Woedtke, Th ;
Brandenburg, R. ;
von dem Hagen, T. ;
Weltmann, K-D .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2011, 44 (01)
[10]  
Ermolaeva S., 2012, MED FOOD SECURITY A, P163