SHARP LP-BOUNDS FOR THE MARTINGALE MAXIMAL FUNCTION

被引:1
作者
Osekowski, Adam [1 ]
机构
[1] Univ Warsaw, Dept Math Informat & Mech, Banacha 2, PL-02097 Warsaw, Poland
关键词
Martingale; maximal function; weighted inequality; best constant; WEIGHTED INEQUALITIES; OPERATORS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper studies sharp weighted L-p inequalities for the martingale maximal function. Proofs exploit properties of certain special functions of four variables and self-improving properties of A(p) weights.
引用
收藏
页码:121 / 138
页数:18
相关论文
共 23 条
  • [1] ESTIMATES FOR OPERATOR NORMS ON WEIGHTED SPACES AND REVERSE JENSEN INEQUALITIES
    BUCKLEY, SM
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 340 (01) : 253 - 272
  • [2] BURKHOLDER DL, 1991, LECT NOTES MATH, V1464, P2
  • [3] Sharp weighted estimates for classical operators
    Cruz-Uribe, David
    Maria Martell, Jose
    Perez, Carlos
    [J]. ADVANCES IN MATHEMATICS, 2012, 229 (01) : 408 - 441
  • [4] DELLACHERIE C, 1982, PROBABILITIES POTE B
  • [5] SOME MAXIMAL INEQUALITIES
    FEFFERMAN, C
    STEIN, EM
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 1971, 93 (01) : 107 - +
  • [6] Garcia-Cuerva J., 1985, WEIGHTED NORM INEQUA
  • [7] Hukovic S., 2000, OPER THEOR, V113, P97
  • [8] Sharp weighted estimates for dyadic shifts and the A2 conjecture
    Hytonen, Tuomas
    Perez, Carlos
    Treil, Sergei
    Volberg, Alexander
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2014, 687 : 43 - 86
  • [9] Izumisawa M., 1977, Tohoku Math. J., V29, P115, DOI [10.2748/tmj/1178240700, DOI 10.2748/TMJ/1178240700]
  • [10] KAZAMAKI N., 1994, LECT NOTES MATH, P1579