A simple and efficient quasi 3-dimensional viscoelastic model and software for simulation of tapping-mode atomic force microscopy

被引:9
作者
Solares, Santiago D. [1 ]
机构
[1] George Washington Univ, Dept Mech & Aerosp Engn, Washington, DC 20052 USA
来源
BEILSTEIN JOURNAL OF NANOTECHNOLOGY | 2015年 / 6卷
关键词
atomic force microscopy (AFM); modeling; multifrequency; multimodal; polymers; simulation; spectroscopy; standard linear solid; tapping-mode AFM; viscoelasticity; ENERGY-DISSIPATION; MODULATION; SURFACES;
D O I
10.3762/bjnano.6.229
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This paper introduces a quasi-3-dimensional (Q3D) viscoelastic model and software tool for use in atomic force microscopy (AFM) simulations. The model is based on a 2-dimensional array of standard linear solid (SLS) model elements. The well-known 1-dimensional SLS model is a textbook example in viscoelastic theory but is relatively new in AFM simulation. It is the simplest model that offers a qualitatively correct description of the most fundamental viscoelastic behaviors, namely stress relaxation and creep. However, this simple model does not reflect the correct curvature in the repulsive portion of the force curve, so its application in the quantitative interpretation of AFM experiments is relatively limited. In the proposed Q3D model the use of an array of SLS elements leads to force curves that have the typical upward curvature in the repulsive region, while still offering a very low computational cost. Furthermore, the use of a multidimensional model allows for the study of AFM tips having non-ideal geometries, which can be extremely useful in practice. Examples of typical force curves are provided for single-and multifrequency tapping-mode imaging, for both of which the force curves exhibit the expected features. Finally, a software tool to simulate amplitude and phase spectroscopy curves is provided, which can be easily modified to implement other controls schemes in order to aid in the interpretation of AFM experiments.
引用
收藏
页码:2233 / 2241
页数:9
相关论文
共 20 条
[1]   Reconstruction of tip-surface interactions with multimodal intermodulation atomic force microscopy [J].
Borysov, Stanislav S. ;
Platz, Daniel ;
de Wijn, Astrid S. ;
Forchheimer, Daniel ;
Tolen, Eric A. ;
Balatsky, Alexander V. ;
Haviland, David B. .
PHYSICAL REVIEW B, 2013, 88 (11)
[2]   Energy dissipation in tapping-mode atomic force microscopy [J].
Cleveland, JP ;
Anczykowski, B ;
Schmid, AE ;
Elings, VB .
APPLIED PHYSICS LETTERS, 1998, 72 (20) :2613-2615
[3]   Bimodal frequency-modulated atomic force microscopy with small cantilevers [J].
Dietz, Christian ;
Schulze, Marcus ;
Voss, Agnieszka ;
Riesch, Christian ;
Stark, Robert W. .
NANOSCALE, 2015, 7 (05) :1849-1856
[4]   Visualizing the Subsurface of Soft Matter: Simultaneous Topographical Imaging, Depth Modulation, and Compositional Mapping with Triple Frequency Atomic Force Microscopy [J].
Ebeling, Daniel ;
Eslami, Babak ;
Solares, Santiago De Jesus .
ACS NANO, 2013, 7 (11) :10387-10396
[5]   Dynamic atomic force microscopy methods [J].
García, R ;
Pérez, R .
SURFACE SCIENCE REPORTS, 2002, 47 (6-8) :197-301
[6]  
Garcia R, 2012, NAT NANOTECHNOL, V7, P217, DOI [10.1038/NNANO.2012.38, 10.1038/nnano.2012.38]
[7]   Fast nanomechanical spectroscopy of soft matter [J].
Herruzo, Elena T. ;
Perrino, Alma P. ;
Garcia, Ricardo .
NATURE COMMUNICATIONS, 2014, 5
[8]   Viscoelastic Property Mapping with Contact Resonance Force Microscopy [J].
Killgore, J. P. ;
Yablon, D. G. ;
Tsou, A. H. ;
Gannepalli, A. ;
Yuya, P. A. ;
Turner, J. A. ;
Proksch, R. ;
Hurley, D. C. .
LANGMUIR, 2011, 27 (23) :13983-13987
[9]   Modeling viscoelasticity through spring-dashpot models in intermittent-contact atomic force microscopy [J].
Lopez-Guerra, Enrique A. ;
Solares, Santiago D. .
BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2014, 5 :2149-2163
[10]   Measuring phase shifts and energy dissipation with amplitude modulation atomic force microscopy [J].
Martínez, NF ;
García, R .
NANOTECHNOLOGY, 2006, 17 (07) :S167-S172