Galois cohomology of special orthogonal groups

被引:3
|
作者
Garibaldi, R
Tignol, JP
Wadsworth, AR
机构
[1] UNIV CALIF SAN DIEGO,DEPT MATH,LA JOLLA,CA 92093
[2] UNIV CATHOLIQUE LOUVAIN,INST MATH,B-1348 LOUVAIN,BELGIUM
关键词
D O I
10.1007/BF02677469
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If (A, sigma) is a central simple algebra of even degree with orthogonal involution, then for the map of Galois cohomology sets from H-1(F, SO(A, sigma)) to the 2-torsion in the Brauer group of F, we describe fully the image of a given element of H-1(F, SO(A, sigma)) and prove that this description is correct in two different ways. As an easy consequence, we derive a result of Bartels [Bar, Satz 3].
引用
收藏
页码:247 / 266
页数:20
相关论文
共 50 条
  • [1] Galois cohomology of special orthogonal groups
    Ryan Garibaldi
    Jean-Pierre Tignol
    Adrian R. Wadsworth
    manuscripta mathematica, 1997, 93 : 247 - 266
  • [2] GALOIS REPRESENTATIONS FOR EVEN GENERAL SPECIAL ORTHOGONAL GROUPS
    Kret, Arno
    Shin, Sug Woo
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2024, 23 (05) : 1959 - 2050
  • [3] On Galois cohomology and realizability of 2-groups as Galois groups
    Michailov, Ivo M.
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2011, 9 (02): : 403 - 419
  • [4] GALOIS COHOMOLOGY OF ABELIAN GROUPS
    TARWATER, D
    PACIFIC JOURNAL OF MATHEMATICS, 1968, 24 (01) : 177 - &
  • [5] On Galois cohomology and realizability of 2-groups as Galois groups II
    Michailov, Ivo M.
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2011, 9 (06): : 1333 - 1343
  • [6] GALOIS AND CARTAN COHOMOLOGY OF REAL GROUPS
    Adams, Jeffrey
    Taibi, Olivier
    DUKE MATHEMATICAL JOURNAL, 2018, 167 (06) : 1057 - 1097
  • [7] Abelian Galois cohomology of reductive groups
    Borovoi, M
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 132 (626) : 1 - +
  • [8] Galois cohomology of completed link groups
    Blomer, Inga
    Linnell, Peter A.
    Schick, Thomas
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (10) : 3449 - 3459
  • [9] On the Galois cohomology of ideal class groups
    Burns, David
    Seo, Soogil
    ARCHIV DER MATHEMATIK, 2007, 89 (06) : 536 - 540
  • [10] On the Galois cohomology of ideal class groups
    David Burns
    Soogil Seo
    Archiv der Mathematik, 2007, 89 : 536 - 540