Time-resolved vibrational-pump visible-probe spectroscopy for thermal conductivity measurement of metal-halide perovskites

被引:9
作者
Li, Shunran [1 ,2 ]
Dai, Zhenghong [3 ]
Li, Linda [1 ]
Padture, Nitin P. [3 ]
Guo, Peijun [1 ,2 ]
机构
[1] Yale Univ, Dept Chem & Environm Engn, 9 Hillhouse Ave, New Haven, CT 06520 USA
[2] Yale Univ, Energy Sci Inst, 810 West Campus Dr, West Haven, CT 06516 USA
[3] Brown Univ, Sch Engn, Providence, RI 02912 USA
关键词
PHASE-TRANSITIONS; SOLAR-CELLS; PHONON; TRANSPORT; CH3NH3PBI3; EFFICIENCY; SILICON;
D O I
10.1063/5.0083763
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Understanding thermal transport at the microscale to the nanoscale is crucially important for a wide range of technologies ranging from device thermal management and protection systems to thermal-energy regulation and harvesting. In the past decades, non-contact optical methods, such as time-domain and frequency-domain thermoreflectance, have emerged as extremely powerful and versatile thermal metrological techniques for the measurement of material thermal conductivities. Here, we report the measurement of thermal conductivity of thin films of CH3NH3PbI3 (MAPbI(3)), a prototypical metal-halide perovskite, by developing a time-resolved optical technique called vibrational-pump visible-probe (VPVP) spectroscopy. The VPVP technique relies on the direct thermal excitation of MAPbI(3) by femtosecond mid-infrared optical pump pulses that are wavelength-tuned to a vibrational mode of the material, after which the time dependent optical transmittance across the visible range is probed in the ns to the mu s time window using a broadband pulsed laser. Using the VPVP method, we determine the thermal conductivities of MAPbI(3) thin films deposited on different substrates. The transducer-free VPVP method reported here is expected to permit spectrally resolving and spatiotemporally imaging of the dynamic lattice temperature variations in organic, polymeric, and hybrid organic-inorganic semiconductors. Published under an exclusive license by AIP Publishing
引用
收藏
页数:8
相关论文
共 58 条
[1]   Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide [J].
Ahn, Namyoung ;
Son, Dae-Yong ;
Jang, In-Hyuk ;
Kang, Seong Min ;
Choi, Mansoo ;
Park, Nam-Gyu .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (27) :8696-8699
[2]   Temperature-dependent thermal conductivity of single-crystal silicon layers in SOI substrates [J].
Asheghi, M ;
Touzelbaev, MN ;
Goodson, KE ;
Leung, YK ;
Wong, SS .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1998, 120 (01) :30-36
[3]  
Balandin AA, 2011, NAT MATER, V10, P569, DOI [10.1038/nmat3064, 10.1038/NMAT3064]
[4]   THERMAL-EXPANSION, GRUNEISEN FUNCTIONS AND STATIC LATTICE PROPERTIES OF QUARTZ [J].
BARRON, THK ;
COLLINS, JF ;
SMITH, TW ;
WHITE, GK .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1982, 15 (20) :4311-4326
[5]   Temperature dependence of thermal conductivity of biological tissues [J].
Bhattacharya, A ;
Mahajan, RL .
PHYSIOLOGICAL MEASUREMENT, 2003, 24 (03) :769-783
[6]   Nanoscale thermal transport. II. 2003-2012 [J].
Cahill, David G. ;
Braun, Paul V. ;
Chen, Gang ;
Clarke, David R. ;
Fan, Shanhui ;
Goodson, Kenneth E. ;
Keblinski, Pawel ;
King, William P. ;
Mahan, Gerald D. ;
Majumdar, Arun ;
Maris, Humphrey J. ;
Phillpot, Simon R. ;
Pop, Eric ;
Shi, Li .
APPLIED PHYSICS REVIEWS, 2014, 1 (01)
[7]   Nanoscale thermal transport [J].
Cahill, DG ;
Ford, WK ;
Goodson, KE ;
Mahan, GD ;
Majumdar, A ;
Maris, HJ ;
Merlin, R ;
Phillpot, SR .
JOURNAL OF APPLIED PHYSICS, 2003, 93 (02) :793-818
[8]   Thermal boundary conductance accumulation and interfacial phonon transmission: Measurements and theory [J].
Cheaito, Ramez ;
Gaskins, John T. ;
Caplan, Matthew E. ;
Donovan, Brian F. ;
Foley, Brian M. ;
Giri, Ashutosh ;
Duda, John C. ;
Szwejkowski, Chester J. ;
Constantin, Costel ;
Brown-Shaklee, Harlan J. ;
Ihlefeld, Jon F. ;
Hopkins, Patrick E. .
PHYSICAL REVIEW B, 2015, 91 (03)
[9]   Next-generation organic photovoltaics based on non-fullerene acceptors [J].
Cheng, Pei ;
Li, Gang ;
Zhan, Xiaowei ;
Yang, Yang .
NATURE PHOTONICS, 2018, 12 (03) :131-142
[10]   Signatures of Coherent Phonon Transport in Ultralow Thermal Conductivity Two-Dimensional Ruddlesden-Popper Phase Perovskites [J].
Christodoulides, Alexander D. ;
Guo, Peijun ;
Dai, Lingyun ;
Hoffman, Justin M. ;
Li, Xiaotong ;
Zuo, Xiaobing ;
Rosenmann, Daniel ;
Brumberg, Alexandra ;
Kanatzidis, Mercouri G. ;
Schaller, Richard D. ;
Malen, Jonathan A. .
ACS NANO, 2021, 15 (03) :4165-4172