The dimension of the space of harmonic 2-spheres in the 6-sphere

被引:4
作者
Fernández, L [1 ]
机构
[1] Univ Los Andes, Dept Matemat, Bogota, Colombia
关键词
D O I
10.1017/S0024609305018205
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using the twistorial approach and some previous results, we prove the conjecture that the dimension of the moduli space of harmonic maps of area 4 pi d from the 2-sphere to the 2n-sphere is 2d + n(2) for the particular case n = 3.
引用
收藏
页码:156 / 162
页数:7
相关论文
共 13 条
[1]   MINIMAL IMMERSIONS OF S2 INTO S2M [J].
BARBOSA, JLM .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 210 (SEP) :75-106
[2]  
BOLTON J., 1992, GEOMETRY TOPOLOGY SU, P143
[3]  
Calabi E., 1967, J DIFFER GEOM, V1, P111
[4]   Normalized potentials of minimal surfaces in spheres [J].
Chi, QS ;
Fernández, L ;
Wu, HY .
NAGOYA MATHEMATICAL JOURNAL, 1999, 156 :187-214
[5]   Rational functions with real critical points and the B. and M. Shapiro conjecture in real enumerative geometry [J].
Eremenko, A ;
Gabrielov, A .
ANNALS OF MATHEMATICS, 2002, 155 (01) :105-129
[6]  
FERNANDEZ L., 2003, INT J MATH MATH SCI, P2803, DOI DOI 10.1155/S0161171203112161
[7]  
FUBUTA M, 1994, MATH Z, V215, P303
[8]   GROUP-ACTIONS AND DEFORMATIONS FOR HARMONIC MAPS [J].
GUEST, MA ;
OHNITA, Y .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1993, 45 (04) :671-704
[10]   THE SPACE OF HARMONIC MAPS OF S2 INTO S4 [J].
LOO, B .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 313 (01) :81-102