Low-Resistivity Long-Length Horizontal Carbon Nanotube Bundles for Interconnect Applications-Part II: Characterization

被引:13
作者
Li, Hong [1 ]
Liu, Wei [1 ]
Cassell, Alan M. [2 ]
Kreupl, Franz [3 ]
Banerjee, Kaustav [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
[2] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA
[3] Tech Univ Munich, Dept Hybrid Elect Syst, D-80333 Munich, Germany
基金
美国国家科学基金会;
关键词
Carbon nanotubes; characterization; horizontally aligned; interconnects; resistivity; self-heating; temperature coefficient of resistance; PERFORMANCE; DENSITY; GROWTH; NANOMATERIALS; CONDUCTIVITY; DIAMETER;
D O I
10.1109/TED.2013.2275258
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Due to the enormous challenges of fabricating long horizontally aligned carbon nanotube (HACNT) bundle interconnects, there exists little research on characterization of long HACNT interconnects. In this paper, taking advantage of our unique HACNT fabrication process outlined in the companion paper, the electrical and self-heating characterization of long HACNT bundles are reported. Negative temperature coefficients of resistance for both per unit length resistance and metal-CNT contact resistance are confirmed from measurements. This first report on the electrical and thermal characterization fills the wide gap between CNT interconnect modeling efforts and corresponding experimental efforts by providing many important extracted parameters that are critical in various modeling and analyses.
引用
收藏
页码:2870 / 2876
页数:7
相关论文
共 33 条
[1]   Global (interconnect) warming [J].
Banerjee, K ;
Mehrotra, A .
IEEE CIRCUITS & DEVICES, 2001, 17 (05) :16-32
[2]   Strong, Light, Multifunctional Fibers of Carbon Nanotubes with Ultrahigh Conductivity [J].
Behabtu, Natnael ;
Young, Colin C. ;
Tsentalovich, Dmitri E. ;
Kleinerman, Olga ;
Wang, Xuan ;
Ma, Anson W. K. ;
Bengio, E. Amram ;
ter Waarbeek, Ron F. ;
de Jong, Jorrit J. ;
Hoogerwerf, Ron E. ;
Fairchild, Steven B. ;
Ferguson, John B. ;
Maruyama, Benji ;
Kono, Junichiro ;
Talmon, Yeshayahu ;
Cohen, Yachin ;
Otto, Marcin J. ;
Pasquali, Matteo .
SCIENCE, 2013, 339 (6116) :182-186
[3]  
Dijon J., 2010, IEDM
[4]   Carbon nanotubes for interconnects in future integrated circuits: The challenge of the density [J].
Dijon, Jean ;
Fournier, Adeline ;
Szkutnik, Pierre David ;
Okuno, Hanako ;
Jayet, Celine ;
Fayolle, Murielle .
DIAMOND AND RELATED MATERIALS, 2010, 19 (5-6) :382-388
[5]  
Harutyunyan AR, 2009, SCIENCE, V326, P116, DOI 10.1126/science.1177599
[6]   Water-Assisted Highly Efficient Synthesis of Impurity-Free Single-Walled Carbon Nanotubes [J].
Hata, K ;
Futaba, DN ;
Mizuno, K ;
Namai, T ;
Yumura, M ;
Iijima, S .
SCIENCE, 2004, 306 (5700) :1362-1364
[7]   Integrated three-dimensional microelectromechanical devices from processable carbon nanotube wafers [J].
Hayamizu, Yuhei ;
Yamada, Takeo ;
Mizuno, Kohei ;
Davis, Robert C. ;
Futaba, Don N. ;
Yumura, Motoo ;
Hata, Kenji .
NATURE NANOTECHNOLOGY, 2008, 3 (05) :289-294
[8]   Thermal conductivity of single-walled carbon nanotubes [J].
Hone, J ;
Whitney, M ;
Piskoti, C ;
Zettl, A .
PHYSICAL REVIEW B, 1999, 59 (04) :R2514-R2516
[9]   Scaling analysis of multilevel interconnect temperatures for high-performance ICs [J].
Im, S ;
Srivastava, N ;
Banerjee, K ;
Goodson, KE .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2005, 52 (12) :2710-2719
[10]  
Kawabata A, 2008, IEEE INT INTERC TECH, P237