Arithmetic Progressions in Sumsets and Lp-Almost-Periodicity

被引:19
作者
Croot, Ernie [1 ]
Laba, Izabella [2 ]
Sisask, Olof [3 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[2] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
[3] Univ London, Sch Math Sci, London E1 4NS, England
基金
英国工程与自然科学研究理事会; 加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
D O I
10.1017/S0963548313000060
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We prove results about the L-p-almost-periodicity of convolutions. One of these follows from a simple but rather general lemma about approximating a sum of functions in L-p, and gives a very short proof of a theorem of Green that if A and B are subsets of {1,...,N} of sizes alpha N and beta N then A + B contains an arithmetic progression of length at least exp(c(alpha beta log N)(1/2) - log log N). Another almost-periodicity result improves this bound for densities decreasing with N: we show that under the above hypotheses the sumset A + B contains an arithmetic progression of length at least exp(c(alpha log N/log(3) 2 beta(-1))(1/2) - log(beta(-1) log N)).
引用
收藏
页码:351 / 365
页数:15
相关论文
共 14 条
[1]  
[Anonymous], 2005, Probability: A Graduate Course
[2]  
[Anonymous], 1990, A tribute to Paul Erdos, DOI DOI 10.1017/CBO9780511983917.008
[3]   A polynomial bound in Freiman's theorem [J].
Chang, MC .
DUKE MATHEMATICAL JOURNAL, 2002, 113 (03) :399-419
[4]   A Probabilistic Technique for Finding Almost-Periods of Convolutions [J].
Croot, Ernie ;
Sisask, Olof .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2010, 20 (06) :1367-1396
[5]  
Geroldinger A, 2009, ADV COURSES MATH CRM, P1, DOI 10.1007/978-3-7643-8962-8
[6]   Arithmetic progressions in sumsets [J].
Green, B .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2002, 12 (03) :584-597
[7]  
Green B. J., 2005, London Math. Soc. Lecture Notes, V327, P1
[8]  
Green B. J., 2002, lecture notes
[9]   On dyadic fractions [J].
Khintchine, A .
MATHEMATISCHE ZEITSCHRIFT, 1923, 18 :109-116
[10]   New proofs of Plunnecke-type estimates for product sets in groups [J].
Petridis, Giorgis .
COMBINATORICA, 2012, 32 (06) :721-733