A HYBRID PARAMETER ESTIMATION ALGORITHM FOR S-SYSTEM MODEL OF GENE REGULATORY NETWORKS

被引:0
|
作者
Juang, Jer-Nan [1 ]
Wu, Wesson [1 ]
机构
[1] Natl Cheng Kung Univ, Dept Engn Sci, Tainan 70101, Taiwan
来源
JER-NAN JUANG ASTRODYNAMICS SYMPOSIUM | 2013年 / 147卷
关键词
OPTIMIZATION;
D O I
暂无
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The reconstruction of a gene regulatory network expressed in terms of a S-system model may be accomplished by a simple task of parameter estimation. Empirical data indicate that biological gene networks are sparsely connected and the average number of upstream-regulators per gene is less than two, implying that most of parameter variables in the S-system model are zero. It is thus desired to search for a parameter estimation algorithm that is capable of identifying the connectivity of the gene network and determining its reduced number of non-zero parameters. A hybrid algorithm is presented for identification and parameter estimation of gene network structure described by a S-system model. It combines an optimization process with a system identification method commonly used in the aerospace community. Constraint equations in a matrix form are formulated to deal with the steady state and the network connectivity conditions. The system parameter vector resides in the null space of the constraint matrix. The resulting network structure and system parameters are optimally tuned by minimizing the error of state time history. A numerical experiment is given to illustrate the hybrid parameter estimation algorithm.
引用
收藏
页码:3 / 17
页数:15
相关论文
共 50 条
  • [21] Inference of Chemical Reaction Networks Using Hybrid S-system Models
    Searson, Dominic P.
    Willis, Mark J.
    Horne, Simon J.
    Wright, Allen R.
    CHEMICAL PRODUCT AND PROCESS MODELING, 2007, 2 (01):
  • [22] Effective Parameter Estimation for S-system Models using LPMs and Evolutionary Algorithms
    Kimura, Shuhei
    Amano, Yusuke
    Matsumura, Koki
    Okada-Hatakeyama, Mariko
    2010 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2010,
  • [23] Dynamic modeling of genetic networks using genetic algorithm and S-system
    Kikuchi, S
    Tominaga, D
    Arita, M
    Takahashi, K
    Tomita, M
    BIOINFORMATICS, 2003, 19 (05) : 643 - 650
  • [24] Inferring Large Scale Genetic Networks with S-System Model
    Chowdhury, Ahsan Raja
    Chetty, Madhu
    Nguyen Xuan Vinh
    GECCO'13: PROCEEDINGS OF THE 2013 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2013, : 271 - 278
  • [25] Combining kinetic orders for efficient S-System modelling of gene regulatory network
    Gill, Jaskaran
    Chetty, Madhu
    Shatte, Adrian
    Hallinan, Jennifer
    BIOSYSTEMS, 2022, 220
  • [26] Inference of Biological S-System Using the Separable Estimation Method and the Genetic Algorithm
    Liu, Li-Zhi
    Wu, Fang-Xiang
    Zhang, W. J.
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2012, 9 (04) : 955 - 965
  • [27] Inference of S-system models of genetic networks using a cooperative coevolutionary algorithm
    Kimura, S
    Ide, K
    Kashihara, A
    Kano, M
    Hatakeyama, M
    Masui, R
    Nakagawa, N
    Yokoyama, S
    Kuramitsu, S
    Konagaya, A
    BIOINFORMATICS, 2005, 21 (07) : 1154 - 1163
  • [28] A Double Swarm Methodology for Parameter Estimation in Oscillating Gene Regulatory Networks
    Nobile, Marco S.
    Iba, Hitoshi
    2015 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2015, : 2376 - 2383
  • [29] The Hybrid Swarm Intelligence for S-system Model-based Genetic Network
    Yeh, Wei-Chang
    Huang, Chia-Ling
    2014 IEEE SYMPOSIUM ON SWARM INTELLIGENCE (SIS), 2014, : 121 - 127
  • [30] S-system parameter estimation for noisy metabolic profiles using Newton-flow analysis
    Kutalik, Z.
    Tucker, W.
    Moulton, V.
    IET SYSTEMS BIOLOGY, 2007, 1 (03) : 174 - 180