Pathways for repairing and tolerating the spectrum of oxidative DNA lesions

被引:100
作者
Berquist, Brian R. [2 ]
Wilson, David M., III [1 ]
机构
[1] NIA, Lab Mol Gerontol, NIH, Baltimore, MD 21224 USA
[2] Texas A&M Hlth Sci Ctr, Dept Mol & Cellular Med, Coll Med, College Stn, TX 77843 USA
关键词
Oxidative DNA damage; Excision repair; Interstrand crosslink; Hereditary disorder; BASE-EXCISION-REPAIR; CROSS-LINK REPAIR; FANCONI-ANEMIA PATHWAY; STRUCTURE-SPECIFIC NUCLEASES; THYMINE GLYCOL LESIONS; HAMSTER OVARY CELLS; GROUP-B PROTEIN; COCKAYNE-SYNDROME; TRANSLESION SYNTHESIS; POLYMERASE-ETA;
D O I
10.1016/j.canlet.2012.02.001
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Reactive oxygen species (ROS) arise from both endogenous and exogenous sources. These reactive molecules possess the ability to damage both the DNA nucleobases and the sugar phosphate backbone, leading to a wide spectrum of lesions, including non-bulky (8-oxoguanine and formamidopyrimidine) and bulky (cyclopurine and etheno adducts) base modifications, abasic sites, non-conventional single-strand breaks, protein-DNA adducts, and intra/interstrand DNA crosslinks. Unrepaired oxidative DNA damage can result in bypass mutagenesis during genome copying or gene expression, or blockage of the essential cellular processes of DNA replication or transcription. Such outcomes underlie numerous pathologies, including, but not limited to, carcinogenesis and neurodegeneration, as well as the aging process. Cells have adapted and evolved defense systems against the deleterious effects of ROS, and specifically devote a number of cellular DNA repair and tolerance pathways to combat oxidative DNA damage. Defects in these protective pathways trigger hereditary human diseases that exhibit increased cancer incidence, developmental defects, neurological abnormalities, and/or premature aging. We review herein classic and atypical oxidative DNA lesions, outcomes of encountering these damages during DNA replication and transcription, and the consequences of losing the ability to repair the different forms of oxidative DNA damage. We particularly focus on the hereditary human diseases Xeroderma Pigmentosum, Cockayne Syndrome and Fanconi Anemia, which may involve defects in the efficient repair of oxidative modifications to chromosomal DNA. Published by Elsevier Ireland Ltd.
引用
收藏
页码:61 / 72
页数:12
相关论文
共 166 条
[31]   MECHANISMS OF DISEASE Susceptibility Pathways in Fanconi's Anemia and Breast Cancer [J].
D'Andrea, Alan D. .
NEW ENGLAND JOURNAL OF MEDICINE, 2010, 362 (20) :1909-1919
[32]   The role of CSA in the response to oxidative DNA damage in human cells [J].
D'Errico, M. ;
Parlanti, E. ;
Teson, M. ;
Degan, P. ;
Lemma, T. ;
Calcagnile, A. ;
Iavarone, I. ;
Jaruga, P. ;
Ropolo, M. ;
Pedrini, A. M. ;
Orioli, D. ;
Frosina, G. ;
Zambruno, G. ;
Dizdaroglu, M. ;
Stefanini, M. ;
Dogliotti, E. .
ONCOGENE, 2007, 26 (30) :4336-4343
[33]   New functions of XPC in the protection of human skin cells from oxidative damage [J].
D'Errico, Mariarosaria ;
Parlanti, Eleonora ;
Teson, Massimo ;
de Jesus, Bruno M. Bernardes ;
Degan, Paolo ;
Calcagnile, Angelo ;
Jaruga, Pawel ;
Bjoras, Magnar ;
Crescenzi, Marco ;
Pedrini, Antonia M. ;
Egly, Jean-Marc ;
Zambruno, Giovanna ;
Stefanini, Miria ;
Dizdaroglu, Miral ;
Dogliotti, Eugenia .
EMBO JOURNAL, 2006, 25 (18) :4305-4315
[34]   Early-onset ataxia with ocular motor apraxia and hypoalbuminemia is caused by mutations in a new HIT superfamily gene [J].
Date, H ;
Onodera, O ;
Tanaka, H ;
Iwabuchi, K ;
Uekawa, K ;
Igarashi, S ;
Koike, R ;
Hiroi, T ;
Yuasa, T ;
Awaya, Y ;
Sakai, T ;
Takahashi, T ;
Nagatomo, H ;
Sekijima, Y ;
Kawachi, I ;
Takiyama, Y ;
Nishizawa, M ;
Fukuhara, N ;
Saito, K ;
Sugano, S ;
Tsuji, S .
NATURE GENETICS, 2001, 29 (02) :184-188
[35]   DNA interstrand crosslink repair and cancer [J].
Deans, Andrew J. ;
West, Stephen C. .
NATURE REVIEWS CANCER, 2011, 11 (07) :467-480
[36]  
Decarroz C, 1987, Free Radic Res Commun, V2, P295, DOI 10.3109/10715768709065295
[37]   Attenuation of the formation of DNA-repair foci containing RAD51 in Fanconi anaemia [J].
Digweed, M ;
Rothe, S ;
Demuth, I ;
Scholz, R ;
Schindler, D ;
Stumm, M ;
Grompe, M ;
Jordan, A ;
Sperling, K .
CARCINOGENESIS, 2002, 23 (07) :1121-1126
[38]   FORMATION OF CYTOSINE GLYCOL AND 5,6-DIHYDROXYCYTOSINE IN DEOXYRIBONUCLEIC-ACID ON TREATMENT WITH OSMIUM-TETROXIDE [J].
DIZDAROGLU, M ;
HOLWITT, E ;
HAGAN, MP ;
BLAKELY, WF .
BIOCHEMICAL JOURNAL, 1986, 235 (02) :531-536
[39]   Insertion of dGMP and dAMP during in vitro DNA synthesis opposite an oxidized form of 7,8-dihydro-8-oxoguanine [J].
Duarte, V ;
Muller, JG ;
Burrows, CJ .
NUCLEIC ACIDS RESEARCH, 1999, 27 (02) :496-502
[40]   Delayed repair of radiation induced clustered DNA damage: Friend or foe? [J].
Eccles, Laura J. ;
O'Neill, Peter ;
Lomax, Martine E. .
MUTATION RESEARCH-FUNDAMENTAL AND MOLECULAR MECHANISMS OF MUTAGENESIS, 2011, 711 (1-2) :134-141