High tensile strength and high ionic conductivity bionanocomposite ionogels prepared by gelation of cellulose/ionic liquid solutions with nano-silica

被引:37
作者
Song, Hongzan [1 ]
Luo, Zhiqiang [1 ]
Zhao, Hongchi [1 ]
Luo, Shanshan [1 ]
Wu, Xiaojing [1 ]
Gao, Jungang [1 ]
Wang, Zhigang [2 ]
机构
[1] Hebei Univ, Coll Chem & Environm Sci, Baoding 071002, Peoples R China
[2] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Dept Polymer Sci & Engn, CAS Key Lab Soft Matter Chem, Hefei 230026, Anhui, Peoples R China
基金
美国国家科学基金会;
关键词
SENSITIZED SOLAR-CELLS; GEL POLYMER ELECTROLYTES; 1-ALLYL-3-METHYLIMIDAZOLIUM CHLORIDE; VISCOELASTIC PROPERTIES; RHEOLOGICAL PROPERTIES; SOLVENT-FREE; NANOPARTICLES; TEMPERATURE; TRANSPORT; FIBERS;
D O I
10.1039/c3ra40387d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Novel bionanocomposite ionogels consisting of an ionic liquid (IL) 1-ethyl-3-methylimidazolium acetate (EMIMAc), microcrystalline cellulose (MCC) and nano-silica (nano-SiO2) particles with high tensile strength and high ionic conductivity have been successfully prepared. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) measurements reveal a homogeneous dispersion of nano-SiO2 in the MCC/nano-SiO2/EMIMAc bionanocomposite ionogels. In order to clarify the influences of added nano-SiO2 on the sol-gel transition process and liquid crystalline phase transition for the MCC/nano-SiO2/ EMIMAc systems, the complexes were investigated by dynamic rheological measurements, mechanical tensile property tests and polarized optical microscope (POM) observations. The rheological results indicate that the introduction of nano-SiO2 can induce and accelerate the gelation for the MCC/nano-SiO2/ EMIMAc solutions. By adjusting the MCC and nano-SiO2 concentrations, the gel-sol transition temperature and elastic modulus can be well controlled and the optimized values reach 125 degrees C and 7 x 10(5) Pa, respectively. The POM results reveal that the addition of nano-SiO2 significantly suppresses the liquid crystalline behavior of ionogels. A more significant result is that the bionanocomposite ionogels exhibit high ionic conductivity in the order of 10(-3) S cm(-1) at 30 degrees C. The ionic conductivity of the ionogels increases with increasing temperature and decreasing MCC concentration. The above results demonstrate that the novel bionanocomposite ionogels with high tensile strength are promising for the application as gel polymer electrolytes (GPE) in electrochemical devices.
引用
收藏
页码:11665 / 11675
页数:11
相关论文
共 60 条
[1]   Ion transport in polymer electrolytes containing nanoparticulate TiO2:: The influence of polymer morphology [J].
Adebahr, J ;
Best, AS ;
Byrne, N ;
Jacobsson, P ;
MacFarlane, DR ;
Forsyth, M .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2003, 5 (04) :720-725
[2]   A poly(vinylidene fluoride)-based gel electrolyte membrane for lithium batteries [J].
Appetecchi, GB ;
Croce, F ;
De Paolis, A ;
Scrosati, B .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1999, 463 (02) :248-252
[3]   Unique gelation behavior of cellulose in NaOH/Urea aqueous solution [J].
Cai, J ;
Zhang, L .
BIOMACROMOLECULES, 2006, 7 (01) :183-189
[4]   RHEOLOGY OF MODEL POLYURETHANES AT THE GEL POINT [J].
CHAMBON, F ;
PETROVIC, ZS ;
MACKNIGHT, WJ ;
WINTER, HH .
MACROMOLECULES, 1986, 19 (08) :2146-2149
[5]   Interactions of Silica Nanoparticles and Ionic Liquids Probed by High Pressure Vibrational Spectroscopy [J].
Chang, Hai-Chou ;
Hung, Tzu-Chieh ;
Chang, Shu-Chieh ;
Jiang, Jyh-Chiang ;
Lin, Sheng Hsien .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (24) :11962-11967
[6]   Characterization of new polyacrylonitrile-co-bis[2-(2-methoxyethoxy)ethyl]itaconate based gel polymer electrolytes [J].
Choi, BK ;
Kim, YW ;
Gong, MS ;
Ahn, SH .
ELECTROCHIMICA ACTA, 2001, 46 (23) :3475-3479
[7]   An electrospun poly(vinylidene fluoride) nanofibrous membrane and its battery applications [J].
Choi, SW ;
Jo, SM ;
Lee, WS ;
Kim, YR .
ADVANCED MATERIALS, 2003, 15 (23) :2027-2032
[8]   Ionic and electronic conductivities in carbon nanotubes - ionogel solid device [J].
Ducros, J. -B. ;
Buchtova, N. ;
Magrez, A. ;
Chauvet, O. ;
Le Bideau, J. .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (08) :2508-2511
[9]  
Gao YF, 2009, PROG CHEM, V21, P1553
[10]   Studies on cellulose acetate-based gel polymer electrolytes for proton batteries [J].
Johari, N. A. ;
Kudin, T. I. T. ;
Ali, A. M. M. ;
Winie, T. ;
Yahya, M. Z. A. .
MATERIALS RESEARCH INNOVATIONS, 2009, 13 (03) :232-234