Eye Gaze Correction Using Generative Adversarial Networks

被引:0
|
作者
Yamamoto, Takahiko [1 ]
Seo, Masataka [1 ]
Kitajima, Toshihiko [2 ]
Chen, Yen-Wei [1 ]
机构
[1] Ritsumeikan Univ, Grad Sch Informat Sci & Engn, Kusatsu, Shiga, Japan
[2] Sumsung R&D Inst Japan, Osaka, Japan
关键词
deep learning; image-to-image translation; gaze correction; Generative Adversarial Net(GAN); Conditional GAN;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Eye gaze correction is an important topic in video teleconference and video chart in order to keep the eye contact. In this paper, we propose to use a generative adversarial networks for eye gaze correction. We use pairs of front facial image (idea camera setting) and real facial image (real camera setting) to training the network. By using the trained network, we can generate a gaze corrected facial image (front facial image) for any real facial image. Experiments demonstrated the effectiveness of our proposed method.
引用
收藏
页码:276 / 277
页数:2
相关论文
共 50 条
  • [21] Correction of Banding Errors in Satellite Images With Generative Adversarial Networks (GAN)
    Paola, Zarate L.
    Jesus, Lopez S.
    Christian, Arroyo H.
    Sonia, Rincon U.
    IEEE ACCESS, 2023, 11 : 51960 - 51970
  • [22] Procedural Terrain Generation Using Generative Adversarial Networks
    Voulgaris, Georgios
    Mademlis, Ioannis
    Pitas, Ioannis
    29TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2021), 2021, : 686 - 690
  • [23] Latent Fingerprint Enhancement using Generative Adversarial Networks
    Joshi, Indu
    Anand, Adithya
    Vatsa, Mayank
    Singh, Richa
    Roy, Sumantra Dutta
    Kalra, Prem Kumar
    2019 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2019, : 895 - 903
  • [24] Compressing PDF sets using generative adversarial networks
    Carrazza, Stefano
    Cruz-Martinez, Juan
    Rabemananjara, Tanjona R.
    EUROPEAN PHYSICAL JOURNAL C, 2021, 81 (06):
  • [25] DOOM Level Generation using Generative Adversarial Networks
    Giacomello, Edoardo
    Lanzi, Pier Luca
    Loiacono, Daniele
    2018 IEEE GAMES, ENTERTAINMENT, MEDIA CONFERENCE (GEM), 2018, : 316 - 323
  • [26] Forest fog rendering using generative adversarial networks
    Fayçal Abbas
    Mohamed Chaouki Babahenini
    The Visual Computer, 2023, 39 : 943 - 952
  • [27] Detecting Deceptive Reviews using Generative Adversarial Networks
    Aghakhani, Hojjat
    Machiry, Aravind
    Nilizadeh, Shirin
    Kruegel, Christopher
    Vigna, Giovanni
    2018 IEEE SYMPOSIUM ON SECURITY AND PRIVACY WORKSHOPS (SPW 2018), 2018, : 89 - 95
  • [28] Analysing Image Compression Using Generative Adversarial Networks
    Adate, Amit
    Saxena, Rishabh
    Kiruba, B. Gladys Gnana
    SOFT COMPUTING FOR PROBLEM SOLVING, 2019, 817 : 425 - 432
  • [29] Reimagining Benin Bronzes using generative adversarial networks
    Atairu, Minne
    AI & SOCIETY, 2024, 39 (01) : 91 - 102
  • [30] Magnetic field prediction using generative adversarial networks
    Pollok, Stefan
    Olden-Jorgensen, Nataniel
    Jorgensen, Peter Stanley
    Bjork, Rasmus
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2023, 571