Druzkowski matrix search and D-nilpotent automorphisms

被引:6
作者
Gorni, G
Tutaj-Gasinska, H
Zampieri, G
机构
[1] Univ Udine, Dipartimento Matemat & Informat, I-33100 Udine, Italy
[2] Jagiellonian Univ, Inst Math, PL-30059 Krakow, Poland
[3] Univ Turin, Dipartimento Matemat, I-10123 Turin, Italy
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 1999年 / 10卷 / 02期
关键词
D O I
10.1016/S0019-3577(99)80019-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1939 Keller conjectured that any polynomial mapping f : C-n --> C-n with constant nonvanishing Jacobian determinant, should be invertible. This open problem bears the name of Jacobian conjecture. Druzkowski proved that cubic linens mappings are sufficient to decide the conjecture. For this important class we develop an algorithm that translates the constant-Jacobian condition into algebraic equations in the matrix of parameters. We also single out a natural special case ot these conditions, that we call D-nilpotency. The class of D-nilpotent matrices turns out to coincide with set of matrices that are permutation-similar to upper-triangular matrices. The corresponding cubic-linear maps are always invertible.
引用
收藏
页码:235 / 245
页数:11
相关论文
共 11 条
[1]   THE JACOBIAN CONJECTURE - REDUCTION OF DEGREE AND FORMAL EXPANSION OF THE INVERSE [J].
BASS, H ;
CONNELL, EH ;
WRIGHT, D .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 7 (02) :287-330
[2]   THE JACOBIAN CONJECTURE IN CASE OF RANK OR CORANK LESS THAN 3 [J].
DRUZKOWSKI, LM .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1993, 85 (03) :233-244
[3]   AN EFFECTIVE APPROACH TO KELLER JACOBIAN CONJECTURE [J].
DRUZKOWSKI, LM .
MATHEMATISCHE ANNALEN, 1983, 264 (03) :303-313
[4]  
DRUZKOWSKI LM, 1991, JACOBIAN CONJECTURE, V492
[5]   On cubic-linear polynomial mappings [J].
Gorni, G ;
Zampieri, G .
INDAGATIONES MATHEMATICAE-NEW SERIES, 1997, 8 (04) :471-492
[6]  
HUBBERS E, 1998, THESIS NIJMEGEN U, P151
[7]  
KELLER OH, 1939, MONATSH MATH PHYS, V47, P299, DOI DOI 10.1007/BF01695502(GERMAN
[8]   WANTED - A BAD MATRIX [J].
MEISTERS, GH .
AMERICAN MATHEMATICAL MONTHLY, 1995, 102 (06) :546-550
[9]   INJECTIVE POLYNOMIAL MAPS ARE AUTOMORPHISMS [J].
RUDIN, W .
AMERICAN MATHEMATICAL MONTHLY, 1995, 102 (06) :540-543
[10]  
VANDENESSEN A, 1995, P CUR C JUL 4 8 1994