Mapping Nucleosome Resolution Chromosome Folding in Yeast by Micro-C

被引:498
作者
Hsieh, Tsung-Han S. [1 ]
Weiner, Assaf [2 ,3 ]
Lajoie, Bryan [1 ,4 ]
Dekker, Job [1 ,4 ]
Friedman, Nir [2 ,3 ]
Rando, Oliver J. [1 ]
机构
[1] Univ Massachusetts, Dept Biochem & Mol Pharmacol, Sch Med, Worcester, MA 01605 USA
[2] Hebrew Univ Jerusalem, Sch Comp Sci & Engn, IL-91904 Jerusalem, Israel
[3] Hebrew Univ Jerusalem, Alexander Silberman Inst Life Sci, IL-91904 Jerusalem, Israel
[4] Univ Massachusetts, Sch Med, Program Syst Biol, Worcester, MA 01605 USA
基金
欧洲研究理事会;
关键词
CHROMATIN FIBER; HISTONE MODIFICATIONS; 30-NM FIBER; IN-VIVO; GENOME; ORGANIZATION; DROSOPHILA; PROMOTERS; REVEALS; CONFORMATION;
D O I
10.1016/j.cell.2015.05.048
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We describe a Hi-C-based method, Micro-C, in which micrococcal nuclease is used instead of restriction enzymes to fragment chromatin, enabling nucleosome resolution chromosome folding maps. Analysis of Micro-C maps for budding yeast reveals abundant self-associating domains similar to those reported in other species, but not previously observed in yeast. These structures, far shorter than topologically associating domains in mammals, typically encompass one to five genes in yeast. Strong boundaries between self-associating domains occur at promoters of highly transcribed genes and regions of rapid histone turnover that are typically bound by the RSC chromatin-remodeling complex. Investigation of chromosome folding in mutants confirms roles for RSC, "gene looping'' factor Ssu72, Mediator, H3K56 acetyltransferase Rtt109, and the N-terminal tail of H4 in folding of the yeast genome. This approach provides detailed structural maps of a eukaryotic genome, and our findings provide insights into the machinery underlying chromosome compaction.
引用
收藏
页码:108 / 119
页数:12
相关论文
共 49 条
[1]   A role for the CPF 3′-end processing machinery in RNAP II-dependent gene looping [J].
Ansari, A ;
Hampsey, M .
GENES & DEVELOPMENT, 2005, 19 (24) :2969-2978
[2]   Probing nucleosome function: A highly versatile library of synthetic histone H3 and H4 mutants [J].
Dai, Junbiao ;
Hyland, Edel M. ;
Yuan, Daniel S. ;
Huang, Hailiang ;
Bader, Joel S. ;
Boeke, Jef D. .
CELL, 2008, 134 (06) :1066-1078
[3]   Capturing chromosome conformation [J].
Dekker, J ;
Rippe, K ;
Dekker, M ;
Kleckner, N .
SCIENCE, 2002, 295 (5558) :1306-1311
[5]   Dynamics of replication-independent histone turnover in budding yeast [J].
Dion, Michael F. ;
Kaplan, Tommy ;
Kim, Minkyu ;
Buratowski, Stephen ;
Friedman, Nir ;
Rando, Oliver J. .
SCIENCE, 2007, 315 (5817) :1405-1408
[6]   Topological domains in mammalian genomes identified by analysis of chromatin interactions [J].
Dixon, Jesse R. ;
Selvaraj, Siddarth ;
Yue, Feng ;
Kim, Audrey ;
Li, Yan ;
Shen, Yin ;
Hu, Ming ;
Liu, Jun S. ;
Ren, Bing .
NATURE, 2012, 485 (7398) :376-380
[7]   Nucleosome arrays reveal the two-start organization of the chromatin fiber [J].
Dorigo, B ;
Schalch, T ;
Kulangara, A ;
Duda, S ;
Schroeder, RR ;
Richmond, TJ .
SCIENCE, 2004, 306 (5701) :1571-1573
[8]   A three-dimensional model of the yeast genome [J].
Duan, Zhijun ;
Andronescu, Mirela ;
Schutz, Kevin ;
McIlwain, Sean ;
Kim, Yoo Jung ;
Lee, Choli ;
Shendure, Jay ;
Fields, Stanley ;
Blau, C. Anthony ;
Noble, William S. .
NATURE, 2010, 465 (7296) :363-367
[9]   Genome-wide Hi-C Analyses in Wild-Type and Mutants Reveal High-Resolution Chromatin Interactions in Arabidopsis [J].
Feng, Suhua ;
Cokus, Shawn J. ;
Schubert, Veit ;
Zhai, Jixian ;
Pellegrini, Matteo ;
Jacobsen, Steven E. .
MOLECULAR CELL, 2014, 55 (05) :694-707
[10]   Living without 30 nm chromatin fibers [J].
Fussner, Eden ;
Ching, Reagan W. ;
Bazett-Jones, David P. .
TRENDS IN BIOCHEMICAL SCIENCES, 2011, 36 (01) :1-6