Genome-Wide Characterization and Identification of Trihelix Transcription Factor and Expression Profiling in Response to Abiotic Stresses in Rice (Oryza sativa L.)

被引:47
|
作者
Li, Jiaming [1 ]
Zhang, Minghui [2 ]
Sun, Jian [1 ]
Mao, Xinrui [1 ]
Wang, Jing [3 ]
Wang, Jingguo [1 ]
Liu, Hualong [1 ]
Zheng, Hongliang [1 ]
Zhen, Zhen [2 ]
Zhao, Hongwei [1 ]
Zou, Detang [1 ]
机构
[1] Northeast Agr Univ, Coll Agr, Harbin 150030, Heilongjiang, Peoples R China
[2] Northeast Agr Univ, Coll Life Sci, Harbin 150030, Heilongjiang, Peoples R China
[3] Agr Technol & Popularizat Ctr, Jixi 158100, Peoples R China
基金
黑龙江省自然科学基金;
关键词
rice; trihelix transcription factor; phylogenetic analysis; stress response; light; DNA-BINDING; ARABIDOPSIS; GENE; PROTEIN; LIGHT; PHYTOCHROME; DATABASE; FAMILY; MECHANISM; NETWORKS;
D O I
10.3390/ijms20020251
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Trihelix transcription factors play a role in plant growth, development and various stress responses. Here, we identified 41 trihelix family genes in the rice genome. These OsMSLs (Myb/SANT-LIKE) were located on twelve chromosomes. Synteny analysis indicated only six duplicated gene pairs in the rice trihelix family. Phylogenetic analysis of these OsMSLs and the trihelix genes from other species divided them into five clusters. OsMSLs from different groups significantly diverged in terms of gene structure and conserved functional domains. However, all OsMSLs contained the same five cis-elements. Some of these were responsive to light and dehydration stress. All OsMSLs expressed in four tissues and six developmental stages of rice but with different expression patterns. Quantitative real-time PCR analysis revealed that the OsMSLs responded to abiotic stresses including drought and high salt stress and stress signal molecule including ABA (abscisic acid), hydrogen peroxide. OsMSL39 were simultaneously expressed under all treatments, while OsMSL28 showed high expression under hydrogen peroxide, drought, and high salt treatments. Moreover, OsMSL16/27/33 displayed significant expression under ABA and drought treatments. Nevertheless, their responses were regulated by light. The expression levels of the 12 chosen OsMSLs differed between light and dark conditions. In conclusion, our results helped elucidate the biological functions of rice trihelix genes and provided a theoretical basis for further characterizing their biological roles in responding to abiotic stresses.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] Genome-wide identification and expression analysis of the trihelix transcription factor family in sesame (Sesamum indicum L.) under abiotic stress
    Yunyan Zhao
    Junchao Liang
    Zhiqi Wang
    Tingxian Yan
    Xiaowen Yan
    Wenliang Wei
    Meiwang Le
    Jian Sun
    Molecular Biology Reports, 2023, 50 : 8281 - 8295
  • [22] Genome-Wide Identification, Classification, and Expression Analysis of Autophagy-Associated Gene Homologues in Rice (Oryza sativa L.)
    Xia, Kuaifei
    Liu, Tao
    Ouyang, Jie
    Wang, Ren
    Fan, Tian
    Zhang, Mingyong
    DNA RESEARCH, 2011, 18 (05) : 363 - 377
  • [23] Genome-wide transcriptome profiling provides insights into panicle development of rice (Oryza sativa L.)
    Ke, Shanwen
    Liu, Xin-Jiang
    Luan, Xin
    Yang, Weifeng
    Zhu, Haitao
    Liu, Guifu
    Zhang, Guiquan
    Wang, Shaokui
    GENE, 2018, 675 : 285 - 300
  • [24] Genome-wide identification and expression profiling of MYB transcription factor genes in radish (Raphanus sativus L.)
    Muleke, Everlyne M'mbone
    Wang, Yan
    Zhang Wan-ting
    Xu, Liang
    Ying Jia-li
    Karanja, Bernard K.
    Zhu Xian-wen
    Fan Lian-xue
    Ahmadzai, Zarwali
    Liu Li-wang
    JOURNAL OF INTEGRATIVE AGRICULTURE, 2021, 20 (01) : 120 - 131
  • [25] Genome-wide identification and expression profile analysis of trihelix transcription factor family genes in response to abiotic stress in sorghum [Sorghum bicolor (L.) Moench]
    Kuiyin Li
    Lili Duan
    Yubo Zhang
    Miaoxiao Shi
    Songshu Chen
    Mingfang Yang
    Yanqing Ding
    Yashu Peng
    Yabing Dong
    Hao Yang
    Zhenhua Li
    Liyi Zhang
    Yu Fan
    Mingjian Ren
    BMC Genomics, 22
  • [26] Genome-wide identification of the LBD transcription factor genes in common bean (Phaseolus vulgaris L.) and expression analysis under different abiotic stresses
    Du, Yanli
    Zhao, Qiang
    Li, Weijia
    Geng, Jing
    Li, Siqi
    Yuan, Xiankai
    Gu, Yanhua
    Zhong, Jingwen
    Zhang, Yuxian
    Du, Jidao
    JOURNAL OF PLANT INTERACTIONS, 2022, 17 (01) : 731 - 743
  • [27] Genome-wide identification, characterization, and expression analysis of the Chalcone Synthase gene family in Oryza sativa under Abiotic Stresses
    Ahmad, Sheraz
    Jeridi, Mouna
    Siddiqui, Sazada
    Shah, Amir Zaman
    Ali, Saqib
    PLANT STRESS, 2023, 9
  • [28] WRKY Transcription Factors in Medicago sativa L.: Genome-Wide Identification and Expression Analysis Under Abiotic Stress
    Mao, Pei
    Jin, Xiaoyu
    Bao, Qinyan
    Mei, Cuo
    Zhou, Qiang
    Min, Xueyang
    Liu, Zhipeng
    DNA AND CELL BIOLOGY, 2020, 39 (12) : 2212 - 2225
  • [29] Genome-wide identification and characterization of cation-proton antiporter (CPA) gene family in rice (Oryza sativa L.) and their expression profiles in response to phytohormones
    Islam, Md. Shohel Ul
    Akter, Nasrin
    Zohra, Fatema Tuz
    Rashid, Shuraya Beente
    Hasan, Naimul
    Rahman, Shaikh Mizanur
    Sarkar, Md. Abdur Rauf
    PLOS ONE, 2025, 20 (01):
  • [30] Heat shock factors in rice (Oryza sativa L.): genome-wide expression analysis during reproductive development and abiotic stress
    Chauhan, Harsh
    Khurana, Neetika
    Agarwal, Pinky
    Khurana, Paramjit
    MOLECULAR GENETICS AND GENOMICS, 2011, 286 (02) : 171 - 187