Genome-Wide Characterization and Identification of Trihelix Transcription Factor and Expression Profiling in Response to Abiotic Stresses in Rice (Oryza sativa L.)

被引:47
|
作者
Li, Jiaming [1 ]
Zhang, Minghui [2 ]
Sun, Jian [1 ]
Mao, Xinrui [1 ]
Wang, Jing [3 ]
Wang, Jingguo [1 ]
Liu, Hualong [1 ]
Zheng, Hongliang [1 ]
Zhen, Zhen [2 ]
Zhao, Hongwei [1 ]
Zou, Detang [1 ]
机构
[1] Northeast Agr Univ, Coll Agr, Harbin 150030, Heilongjiang, Peoples R China
[2] Northeast Agr Univ, Coll Life Sci, Harbin 150030, Heilongjiang, Peoples R China
[3] Agr Technol & Popularizat Ctr, Jixi 158100, Peoples R China
基金
黑龙江省自然科学基金;
关键词
rice; trihelix transcription factor; phylogenetic analysis; stress response; light; DNA-BINDING; ARABIDOPSIS; GENE; PROTEIN; LIGHT; PHYTOCHROME; DATABASE; FAMILY; MECHANISM; NETWORKS;
D O I
10.3390/ijms20020251
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Trihelix transcription factors play a role in plant growth, development and various stress responses. Here, we identified 41 trihelix family genes in the rice genome. These OsMSLs (Myb/SANT-LIKE) were located on twelve chromosomes. Synteny analysis indicated only six duplicated gene pairs in the rice trihelix family. Phylogenetic analysis of these OsMSLs and the trihelix genes from other species divided them into five clusters. OsMSLs from different groups significantly diverged in terms of gene structure and conserved functional domains. However, all OsMSLs contained the same five cis-elements. Some of these were responsive to light and dehydration stress. All OsMSLs expressed in four tissues and six developmental stages of rice but with different expression patterns. Quantitative real-time PCR analysis revealed that the OsMSLs responded to abiotic stresses including drought and high salt stress and stress signal molecule including ABA (abscisic acid), hydrogen peroxide. OsMSL39 were simultaneously expressed under all treatments, while OsMSL28 showed high expression under hydrogen peroxide, drought, and high salt treatments. Moreover, OsMSL16/27/33 displayed significant expression under ABA and drought treatments. Nevertheless, their responses were regulated by light. The expression levels of the 12 chosen OsMSLs differed between light and dark conditions. In conclusion, our results helped elucidate the biological functions of rice trihelix genes and provided a theoretical basis for further characterizing their biological roles in responding to abiotic stresses.
引用
收藏
页数:24
相关论文
共 50 条
  • [11] Genome-wide identification and expression profiling analysis of the trihelix gene family and response of PgGT1 under abiotic stresses in Platycodon grandiflorus
    Liu, Meiqi
    Liu, Tingxia
    Liu, Weili
    Wang, Zhen
    Kong, Lingyang
    Lu, Jiaxin
    Zhang, Zhanping
    Su, Xiaoyue
    Liu, Xiubo
    Ma, Wei
    Ren, Weichao
    GENE, 2023, 869
  • [12] Genome-wide identification of DUF506 gene family in Oryza sativa and expression profiling under abiotic stresses
    Dong, Wei
    Tu, Jian
    Deng, Wei
    Zhang, Jianhua
    Xu, Yuran
    Gu, Anyu
    An, Hua
    Fan, Kui
    Wang, Rui
    Zhang, Jianping
    Kui, Limei
    Li, Xiaolin
    PEERJ, 2023, 11
  • [13] Genome-Wide Identification and Expression Profiling of the SPL Transcription Factor Family in Response to Abiotic Stress in Centipedegrass
    Kong, Dandan
    Xu, Maotao
    Liu, Siyu
    Liu, Tianqi
    Liu, Boyang
    Wang, Xiaoyun
    Dong, Zhixiao
    Ma, Xiao
    Zhao, Junming
    Lei, Xiong
    PLANTS-BASEL, 2025, 14 (01):
  • [14] Genome-Wide Identification and Expression Profiling Analysis of the Trihelix Gene Family Under Abiotic Stresses in Medicago truncatula
    Liu, Xiqiang
    Zhang, Han
    Ma, Lin
    Wang, Zan
    Wang, Kun
    GENES, 2020, 11 (11) : 1 - 18
  • [15] Genome-wide identification and expression profile analysis of trihelix transcription factor family genes in response to abiotic stress in sorghum [Sorghum bicolor (L.) Moench]
    Li, Kuiyin
    Duan, Lili
    Zhang, Yubo
    Shi, Miaoxiao
    Chen, Songshu
    Yang, Mingfang
    Ding, Yanqing
    Peng, Yashu
    Dong, Yabing
    Yang, Hao
    Li, Zhenhua
    Zhang, Liyi
    Fan, Yu
    Ren, Mingjian
    BMC GENOMICS, 2021, 22 (01)
  • [16] Genome-Wide Identification and Characterization of the Oat (Avena sativa L.) WRKY Transcription Factor Family
    Liu, Kaiqiang
    Ju, Zeliang
    Jia, Zhifeng
    Liang, Guoling
    Ma, Xiang
    Liu, Wenhui
    GENES, 2022, 13 (10)
  • [17] Genome-wide analysis of Dof transcription factors and their response to cold stress in rice (Oryza sativa L.)
    Jia Liu
    Qinglin Meng
    Hongtao Xiang
    Fengmei Shi
    Ligong Ma
    Yichu Li
    Chunlai Liu
    Yu Liu
    Baohua Su
    BMC Genomics, 22
  • [18] Genome-wide identification and characterization of cystatin family genes in rice (Oryza sativa L.)
    Wei Wang
    Peng Zhao
    Xue-mei Zhou
    Han-xian Xiong
    Meng-xiang Sun
    Plant Cell Reports, 2015, 34 : 1579 - 1592
  • [19] Genome-wide identification and characterization of cystatin family genes in rice (Oryza sativa L.)
    Wang, Wei
    Zhao, Peng
    Zhou, Xue-mei
    Xiong, Han-xian
    Sun, Meng-xiang
    PLANT CELL REPORTS, 2015, 34 (09) : 1579 - 1592
  • [20] Genome-wide characterization and functional analysis of heat shock transcription factors in wild and cultivated rice ( Oryza sativa L.)
    Tao, Huan
    Xu, Shichang
    Shen, Huiling
    Yang, Junwei
    Xu, Yinying
    Huang, Guanpeng
    Feng, Changqing
    Wan, Weifeng
    Woldegiorgis, Samuel Tareke
    Liu, Wei
    He, Huaqin
    PLANT STRESS, 2024, 12