Genome-Wide Characterization and Identification of Trihelix Transcription Factor and Expression Profiling in Response to Abiotic Stresses in Rice (Oryza sativa L.)

被引:47
|
作者
Li, Jiaming [1 ]
Zhang, Minghui [2 ]
Sun, Jian [1 ]
Mao, Xinrui [1 ]
Wang, Jing [3 ]
Wang, Jingguo [1 ]
Liu, Hualong [1 ]
Zheng, Hongliang [1 ]
Zhen, Zhen [2 ]
Zhao, Hongwei [1 ]
Zou, Detang [1 ]
机构
[1] Northeast Agr Univ, Coll Agr, Harbin 150030, Heilongjiang, Peoples R China
[2] Northeast Agr Univ, Coll Life Sci, Harbin 150030, Heilongjiang, Peoples R China
[3] Agr Technol & Popularizat Ctr, Jixi 158100, Peoples R China
基金
黑龙江省自然科学基金;
关键词
rice; trihelix transcription factor; phylogenetic analysis; stress response; light; DNA-BINDING; ARABIDOPSIS; GENE; PROTEIN; LIGHT; PHYTOCHROME; DATABASE; FAMILY; MECHANISM; NETWORKS;
D O I
10.3390/ijms20020251
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Trihelix transcription factors play a role in plant growth, development and various stress responses. Here, we identified 41 trihelix family genes in the rice genome. These OsMSLs (Myb/SANT-LIKE) were located on twelve chromosomes. Synteny analysis indicated only six duplicated gene pairs in the rice trihelix family. Phylogenetic analysis of these OsMSLs and the trihelix genes from other species divided them into five clusters. OsMSLs from different groups significantly diverged in terms of gene structure and conserved functional domains. However, all OsMSLs contained the same five cis-elements. Some of these were responsive to light and dehydration stress. All OsMSLs expressed in four tissues and six developmental stages of rice but with different expression patterns. Quantitative real-time PCR analysis revealed that the OsMSLs responded to abiotic stresses including drought and high salt stress and stress signal molecule including ABA (abscisic acid), hydrogen peroxide. OsMSL39 were simultaneously expressed under all treatments, while OsMSL28 showed high expression under hydrogen peroxide, drought, and high salt treatments. Moreover, OsMSL16/27/33 displayed significant expression under ABA and drought treatments. Nevertheless, their responses were regulated by light. The expression levels of the 12 chosen OsMSLs differed between light and dark conditions. In conclusion, our results helped elucidate the biological functions of rice trihelix genes and provided a theoretical basis for further characterizing their biological roles in responding to abiotic stresses.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Genome-wide characterization and identification of Trihelix transcription factors and expression profiling in response to abiotic stresses in Chinese Willow (Salix matsudana Koidz)
    Yang, Jie
    Tang, Zhixuan
    Yang, Wuyue
    Huang, Qianhui
    Wang, Yuqing
    Huang, Mengfan
    Wei, Hui
    Liu, Guoyuan
    Lian, Bolin
    Chen, Yanhong
    Zhang, Jian
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [2] Genome-Wide Identification, Characterization, and Expression Analysis under Abiotic Stresses of the UBP Gene Family in Rice (Oryza sativa L.)
    Zou, Xiaoxiao
    Li, Yongliang
    Yin, Huangping
    Xu, Jiajin
    Li, Zeqi
    Jiang, Shuai
    Chen, Fenglin
    Li, You
    Xiao, Wenjun
    Liu, Shucan
    Guo, Xinhong
    AGRONOMY-BASEL, 2023, 13 (11):
  • [3] Genome-wide identification and expression analysis of the trihelix transcription factor family in sesame (Sesamum indicum L.) under abiotic stress
    Zhao, Yunyan
    Liang, Junchao
    Wang, Zhiqi
    Yan, Tingxian
    Yan, Xiaowen
    Wei, Wenliang
    Le, Meiwang
    Sun, Jian
    MOLECULAR BIOLOGY REPORTS, 2023, 50 (10) : 8281 - 8295
  • [4] Genome-Wide Identification and Expression Analysis of RCC1 Gene Family under Abiotic Stresses in Rice (Oryza sativa L.)
    Cen, Qiwen
    Kang, Lihua
    Zhou, Danni
    Zhang, Xian
    Tian, Quanxiang
    Zhang, Xiaoqin
    Mou, Wangshu
    Dang, Cong
    Fang, Yunxia
    Xue, Dawei
    AGRONOMY-BASEL, 2023, 13 (03):
  • [5] Genome-wide identification and expression profiling of trihelix gene family under abiotic stresses in wheat
    Xiao, Jie
    Hu, Rui
    Gu, Ting
    Han, Jiapeng
    Qiu, Ding
    Su, Peipei
    Feng, Jialu
    Chang, Junli
    Yang, Guangxiao
    He, Guangyuan
    BMC GENOMICS, 2019, 20 (1)
  • [6] Genome-wide characterization of MATE gene family and expression profiles in response to abiotic stresses in rice (Oryza sativa)
    Du, Zhixuan
    Su, Qitao
    Wu, Zheng
    Huang, Zhou
    Bao, Jianzhong
    Li, Jianbin
    Tu, Hang
    Zeng, Chuihai
    Fu, Junru
    He, Haohua
    BMC ECOLOGY AND EVOLUTION, 2021, 21 (01):
  • [7] Genome-wide analysis of Dof transcription factors and their response to cold stress in rice (Oryza sativa L.)
    Liu, Jia
    Meng, Qinglin
    Xiang, Hongtao
    Shi, Fengmei
    Ma, Ligong
    Li, Yichu
    Liu, Chunlai
    Liu, Yu
    Su, Baohua
    BMC GENOMICS, 2021, 22 (01)
  • [8] Genome-Wide Identification of Trihelix Genes in Moso Bamboo (Phyllostachys edulis) and Their Expression in Response to Abiotic Stress
    Gao, Hongyan
    Huang, Rong
    Liu, Jun
    Gao, Zhimin
    Zhao, Hansheng
    Li, Xueping
    JOURNAL OF PLANT GROWTH REGULATION, 2019, 38 (03) : 1127 - 1140
  • [9] Genome-Wide Identification and Expression Profiling of the ERF Gene Family in Medicago sativa L. Under Various Abiotic Stresses
    Jin, Xiaoyu
    Yin, Xiaofan
    Ndayambaza, Boniface
    Zhang, Zhengshe
    Min, Xueyang
    Lin, Xiaoshan
    Wang, Yanrong
    Liu, Wenxian
    DNA AND CELL BIOLOGY, 2019, 38 (10) : 1056 - 1068
  • [10] Genome-wide characterization of MATE gene family and expression profiles in response to abiotic stresses in rice (Oryza sativa)
    Zhixuan Du
    Qitao Su
    Zheng Wu
    Zhou Huang
    Jianzhong Bao
    Jianbin Li
    Hang Tu
    Chuihai Zeng
    Junru Fu
    Haohua He
    BMC Ecology and Evolution, 21