Notes on symmetrization by Bezoutiant

被引:3
作者
Nishitani, Tatsuo [1 ]
机构
[1] Osaka Univ, Dept Math, Toyonaka, Osaka 5600043, Japan
来源
BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA | 2020年 / 13卷 / 03期
关键词
Symmetrizer; Bezoutiant; Energy form; Nuij approximation; Quasi-symmetrizer; HYPERBOLIC-EQUATIONS;
D O I
10.1007/s40574-020-00246-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p and q be a monic hyperbolic polynomials such that q separates p and let H be the Bezoutian (form) of p and q. Then H is nonnegative definite and symmetrizes the Sylvester matrix associated with p. When q = p' this fact is observed by E. Jannelli. We give a simple proof of this fact and at the same time prove that the family of Bezoutian of Nuij approximation of p and p' gives quasi-symmetrizers introduced by S. Spagnolo. A relation connecting H with the symmetrizer which was used by J. Leray for strictly hyperbolic polynomials is also given.
引用
收藏
页码:417 / 428
页数:12
相关论文
共 16 条
[1]  
[Anonymous], 2002, LONDON MATH SOC MONO
[2]  
D'Ancona P, 1998, B UNIONE MAT ITAL, V1B, P169
[3]  
Garding L, 1956, COLL INT CNRS NANCY, V71, P71, DOI 0075.09703
[4]  
Ivrii V., 1975, MATH USSR SB, V25, P365, DOI DOI 10.1070/SM1975V025N03ABEH002213
[6]   Homogeneous weakly hyperbolic equations with time dependent analytic coefficients [J].
Jannelli, Enrico ;
Taglialatela, Giovanni .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (4-5) :995-1029
[7]  
Jannelli E, 2009, PROG NONLINEAR DIFFE, V78, P113, DOI 10.1007/978-0-8176-4861-9_7
[8]   Hyperbolic equations with non-analytic coefficients [J].
Kinoshita, Tamotu ;
Spagnolo, Sergio .
MATHEMATISCHE ANNALEN, 2006, 336 (03) :551-569
[9]  
Leray J., 1953, Hyperbolic Differential Equations
[10]   ENERGY INEQUALITY FOR NON STRICTLY HYPERBOLIC OPERATORS IN THE GEVREY CLASS [J].
NISHITANI, T .
JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1983, 23 (04) :739-773