Stabilization and operation of a Kerr-cat qubit

被引:322
作者
Grimm, A. [1 ,4 ]
Frattini, N. E. [1 ]
Puri, S. [2 ]
Mundhada, S. O. [1 ]
Touzard, S. [1 ]
Mirrahimi, M. [3 ]
Girvin, S. M. [2 ]
Shankar, S. [1 ,5 ]
Devoret, M. H. [1 ]
机构
[1] Yale Univ, Dept Appl Phys, New Haven, CT 06520 USA
[2] Yale Univ, Dept Phys, New Haven, CT USA
[3] Inria Paris, QUANTIC Team, Paris, France
[4] Paul Scherrer Inst, Photon Sci Div, Villigen, Switzerland
[5] Univ Texas Austin, Elect & Comp Engn, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
ERROR-CORRECTION; QUANTUM; DECOHERENCE;
D O I
10.1038/s41586-020-2587-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum superpositions of macroscopically distinct classical states-so-called Schrodinger cat states-are a resource for quantum metrology, quantum communication and quantum computation. In particular, the superpositions of two opposite-phase coherent states in an oscillator encode a qubit protected against phase-flip errors(1,2). However, several challenges have to be overcome for this concept to become a practical way to encode and manipulate error-protected quantum information. The protection must be maintained by stabilizing these highly excited states and, at the same time, the system has to be compatible with fast gates on the encoded qubit and a quantum non-demolition readout of the encoded information. Here we experimentally demonstrate a method for the generation and stabilization of Schrodinger cat states based on the interplay between Kerr nonlinearity and single-mode squeezing(1,3)in a superconducting microwave resonator(4). We show an increase in the transverse relaxation time of the stabilized, error-protected qubit of more than one order of magnitude compared with the single-photon Fock-state encoding. We perform all single-qubit gate operations on timescales more than sixty times faster than the shortest coherence time and demonstrate single-shot readout of the protected qubit under stabilization. Our results showcase the combination of fast quantum control and robustness against errors, which is intrinsic to stabilized macroscopic states, as well as the potential of of these states as resources in quantum information processing(5-8). A qubit generated and stabilized in a superconducting microwave resonator by encoding it into Schrodinger cat states produced by Kerr nonlinearity and single-mode squeezing shows intrinsic robustness to phase-flip errors.
引用
收藏
页码:205 / +
页数:7
相关论文
共 41 条
[1]   Fault-tolerant quantum computation against biased noise [J].
Aliferis, Panos ;
Preskill, John .
PHYSICAL REVIEW A, 2008, 78 (05)
[2]  
[Anonymous], 2017, J HEALTHCARE ENG
[3]   Quantum error correction of a qubit encoded in grid states of an oscillator [J].
Campagne-Ibarcq, P. ;
Eickbusch, A. ;
Touzard, S. ;
Zalys-Geller, E. ;
Frattini, N. E. ;
Sivak, V. V. ;
Reinhold, P. ;
Puri, S. ;
Shankar, S. ;
Schoelkopf, R. J. ;
Frunzio, L. ;
Mirrahimi, M. ;
Devoret, M. H. .
NATURE, 2020, 584 (7821) :368-+
[4]   Universal Quantum Gate Set Approaching Fault-Tolerant Thresholds with Superconducting Qubits [J].
Chow, Jerry M. ;
Gambetta, Jay M. ;
Corcoles, A. D. ;
Merkel, Seth T. ;
Smolin, John A. ;
Rigetti, Chad ;
Poletto, S. ;
Keefe, George A. ;
Rothwell, Mary B. ;
Rozen, J. R. ;
Ketchen, Mark B. ;
Steffen, M. .
PHYSICAL REVIEW LETTERS, 2012, 109 (06)
[5]   Macroscopically distinct quantum-superposition states as a bosonic code for amplitude damping [J].
Cochrane, PT ;
Milburn, GJ ;
Munro, WJ .
PHYSICAL REVIEW A, 1999, 59 (04) :2631-2634
[6]   Interaction-induced time-symmetry breaking in driven quantum oscillators [J].
Dykman, M., I ;
Bruder, Christoph ;
Loerch, Niels ;
Zhang, Yaxing .
PHYSICAL REVIEW B, 2018, 98 (19)
[7]   Fluctuational phase-flip transitions in parametrically driven oscillators [J].
Dykman, MI ;
Maloney, CM ;
Smelyanskiy, VN ;
Silverstein, M .
PHYSICAL REVIEW E, 1998, 57 (05) :5202-5212
[8]   Surface codes: Towards practical large-scale quantum computation [J].
Fowler, Austin G. ;
Mariantoni, Matteo ;
Martinis, John M. ;
Cleland, Andrew N. .
PHYSICAL REVIEW A, 2012, 86 (03)
[9]   3-wave mixing Josephson dipole element [J].
Frattini, N. E. ;
Vool, U. ;
Shankar, S. ;
Narla, A. ;
Sliwa, K. M. ;
Devoret, M. H. .
APPLIED PHYSICS LETTERS, 2017, 110 (22)
[10]   Universal quantum computation with a nonlinear oscillator network [J].
Goto, Hayato .
PHYSICAL REVIEW A, 2016, 93 (05)