All-Pairs Shortest Paths for Unweighted Undirected Graphs in o(mn) Time

被引:28
作者
Chan, Timothy M. [1 ]
机构
[1] Univ Waterloo, Sch Comp Sci, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Algorithms; Theory; Graph algorithms; shortest paths; word RAM; ALGORITHM;
D O I
10.1145/2344422.2344424
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We revisit the all-pairs-shortest-paths problem for an unweighted undirected graph with n vertices and m edges. We present new algorithms with the following running times: { O(mn/log n) if m > n log n log log log n O(mn log log n/log n) if m> n log log n O(n2log2logn/logn) if m <= n log log n. These represent the best time bounds known for the problem for all m << n(1.376). We also obtain a similar type of result for the diameter problem for unweighted directed graphs.
引用
收藏
页数:17
相关论文
共 34 条
[1]   FASTER ALGORITHMS FOR THE SHORTEST-PATH PROBLEM [J].
AHUJA, RK ;
MEHLHORN, K ;
ORLIN, JB ;
TARJAN, RE .
JOURNAL OF THE ACM, 1990, 37 (02) :213-223
[2]   Fast estimation of diameter and shortest paths (without matrix multiplication) [J].
Aingworth, D ;
Chekuri, C ;
Indyk, P ;
Motwani, R .
SIAM JOURNAL ON COMPUTING, 1999, 28 (04) :1167-1181
[3]   Improved parallel integer sorting without concurrent writing [J].
Albers, S ;
Hagerup, T .
INFORMATION AND COMPUTATION, 1997, 136 (01) :25-51
[4]   On the exponent of the all pairs shortest path problem [J].
Alon, N ;
Galil, Z ;
Margalit, O .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1997, 54 (02) :255-262
[5]  
[Anonymous], 1970, Soviet Mathematics Doklady
[6]   Regularity Lemmas and Combinatorial Algorithms [J].
Bansal, Nikhil ;
Williams, Ryan .
2009 50TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE: FOCS 2009, PROCEEDINGS, 2009, :745-754
[7]  
Buchsbaum A. L., 1998, Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, P279, DOI 10.1145/276698.276764
[8]   MORE ALGORITHMS FOR ALL-PAIRS SHORTEST PATHS IN WEIGHTED GRAPHS [J].
Chan, Timothy M. .
SIAM JOURNAL ON COMPUTING, 2010, 39 (05) :2075-2089
[9]   MATRIX MULTIPLICATION VIA ARITHMETIC PROGRESSIONS [J].
COPPERSMITH, D ;
WINOGRAD, S .
JOURNAL OF SYMBOLIC COMPUTATION, 1990, 9 (03) :251-280
[10]   A MORE EFFICIENT ALGORITHM FOR THE MIN-PLUS MULTIPLICATION [J].
DOBOSIEWICZ, W .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1990, 32 (1-2) :49-60