A Lindenstrauss theorem for some classes of multilinear mappings

被引:3
作者
Carando, Daniel [1 ]
Lassalle, Silvia [2 ]
Mazzitelli, Martin [1 ]
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat Pab 1, RA-1428 Buenos Aires, DF, Argentina
[2] Univ San Andres, Dept Matemat, Buenos Aires, DF, Argentina
关键词
Integral formula; Norm attaining multilinear mappings and polynomials; Lindenstrauss-type theorems; PHELPS-BOLLOBAS PROPERTY; NORM; POLYNOMIALS; OPERATORS; IDEALS; SPACES; FORMS;
D O I
10.1016/j.jmaa.2014.11.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Under some natural hypotheses, we show that if a multilinear mapping belongs to some Banach multilinear ideal, then it can be approximated by multilinear mappings belonging to the same ideal all whose Arens extensions attain their norms at the same point. We prove a similar result for the class of symmetric multilinear mappings. We see that the quantitative (Bollobas-type) version of these results fails in every multilinear ideal. (C) 2014 Published by Elsevier Inc.
引用
收藏
页码:248 / 262
页数:15
相关论文
共 36 条
[1]   The Bishop-Phelps-Bolloba's theorem for operators [J].
Acosta, Maria D. ;
Aron, Richard M. ;
Garcia, Domingo ;
Maestre, Manuel .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 254 (11) :2780-2799
[2]   The Bishop-Phelps-Bollobas property for bilinear forms and polynomials [J].
Acosta, Maria D. ;
Becerra-Guerrero, Julio ;
Choi, Yun Sung ;
Garcia, Domingo ;
Kim, Sun Kwang ;
Lee, Han Ju ;
Maestre, Manuel .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2014, 66 (03) :957-979
[3]   Bishop-Phelps-Bollobas property for certain spaces of operators [J].
Acosta, Maria D. ;
Becerra Guerrero, Julio ;
Garcia, Domingo ;
Kim, Sun Kwang ;
Maestre, Manuel .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 414 (02) :532-545
[4]   THE BISHOP-PHELPS-BOLLOBAS THEOREM FOR BILINEAR FORMS [J].
Acosta, Maria D. ;
Becerra-Guerrero, Julio ;
Garcia, Domingo ;
Maestre, Manuel .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 365 (11) :5911-5932
[5]   A multilinear Lindenstrauss theorem [J].
Acosta, MD ;
García, D ;
Maestre, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 235 (01) :122-136
[6]   There is no bilinear Bishop-Phelps theorem [J].
Acosta, MD ;
Aguirre, FJ ;
Paya, R .
ISRAEL JOURNAL OF MATHEMATICS, 1996, 93 :221-227
[7]  
Acosta MD, 1998, STUD MATH, V131, P155
[8]  
[Anonymous], 1993, N HOLLAND MATH STUD
[9]   THE ADJOINT OF A BILINEAR OPERATION [J].
ARENS, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1951, 2 (06) :839-848
[10]   THE BISHOP-PHELPS-BOLLOBAS THEOREM AND ASPLUND OPERATORS [J].
Aron, R. M. ;
Cascales, B. ;
Kozhushkina, O. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (10) :3553-3560