ON POINTWISE INVERSION OF THE FOURIER TRANSFORM OF BV0 FUNCTIONS

被引:0
作者
Mendoza Torres, Francisco J. [1 ]
机构
[1] Benemerita Univ Autonoma Puebla, Fac Cs Fis Matemat, Puebla 72570, Pue, Mexico
关键词
Fourier transform; Henstock-Kurzweil integral; Dirichlet-Jordan theorem;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using a Riemann-Lebesgue lemma for the Fourier transform over the class of bounded variation functions that vanish at infinity, we prove the Dirichlet-Jordan theorem for functions on this class. Our proof is in the Henstock-Kurzweil integral context and is different to that of Riesz-Livingston [Amer. Math. Monthly 62 (1955), 434-437]. As consequence, we obtain the Dirichlet-Jordan theorem for functions in the intersection of the spaces of bounded variation functions and of Henstock-Kurzweil integrable functions. In this intersection there exist functions in L-2(R)\L(R).
引用
收藏
页码:112 / 120
页数:9
相关论文
共 5 条
[1]  
Apostol T.M., 1974, Mathematical Analysis
[2]  
BARTLE RG, 2001, GRADUATE STUDIES MAT, V32
[3]  
Torres FJM, 2009, MATH BOHEM, V134, P379
[4]  
RIESZ M., 1955, AM MATH MON, V62, P434
[5]   Henstock-Kurzweil Fourier transforms [J].
Talvila, E .
ILLINOIS JOURNAL OF MATHEMATICS, 2002, 46 (04) :1207-1226