SPARSE ORTHOGONAL LINEAR DISCRIMINANT ANALYSIS

被引:6
作者
Chu, Delin [1 ]
Liao, Li-Zhi [2 ]
Ng, Michael K. [2 ,3 ]
机构
[1] Natl Univ Singapore, Dept Math, Singapore 119076, Singapore
[2] Hong Kong Baptist Univ, Dept Math, Kowloon Tong, Hong Kong, Peoples R China
[3] Hong Kong Baptist Univ, Ctr Math Imaging & Vis, Kowloon Tong, Hong Kong, Peoples R China
关键词
sparsity; linear discriminant analysis; dimensionality reduction; FACE RECOGNITION; NULL SPACE; ALGORITHMS; REDUCTION;
D O I
10.1137/110851377
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, sparse orthogonal linear discriminant analysis (OLDA) is studied. The main contributions of the present work include the following: (i) all minimum Frobeniusnorm/dimension solutions of the optimization problem used for establishing OLDA are characterized explicitly; and (ii) this explicit characterization leads to two numerical algorithms for computing a sparse linear transformation for OLDA. The first is based on the gradient flow approach while the second is a sequential linear Bregman method. We experiment with real world datasets to illustrate that the sequential linear Bregman method is much better than the gradient flow approach. The sequential linear Bregman method always achieves comparable classification accuracy with the normal OLDA, satisfactory sparsity and orthogonality, and acceptable CPU times.
引用
收藏
页码:A2421 / A2443
页数:23
相关论文
共 50 条
  • [21] Linear discriminant analysis: A detailed tutorial
    Tharwat, Alaa
    Gaber, Tarek
    Ibrahim, Abdelhameed
    Hassanien, Aboul Ella
    [J]. AI COMMUNICATIONS, 2017, 30 (02) : 169 - 190
  • [22] LINEAR DISCRIMINANT ANALYSIS WITH SPARSE AND DENSE SIGNALS
    Wang, Ning
    Ren, Shaokang
    Mai, Qing
    [J]. STATISTICA SINICA, 2025, 35 (01) : 343 - 360
  • [23] A Direct Estimation Approach to Sparse Linear Discriminant Analysis
    Cai, Tony
    Liu, Weidong
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2011, 106 (496) : 1566 - 1577
  • [24] Sparse linear discriminant analysis for multiview structured data
    Safo, Sandra E.
    Min, Eun Jeong
    Haine, Lillian
    [J]. BIOMETRICS, 2022, 78 (02) : 612 - 623
  • [25] Sparse regularization discriminant analysis for face recognition
    Yin, Fei
    Jiao, L. C.
    Shang, Fanhua
    Xiong, Lin
    Wang, Xiaodong
    [J]. NEUROCOMPUTING, 2014, 128 : 341 - 362
  • [26] Orthogonal discriminant analysis revisited
    Wang, Yong
    Xie, Jian-Bin
    Wu, Yi
    [J]. PATTERN RECOGNITION LETTERS, 2016, 84 : 149 - 155
  • [27] Sparse Tensor Discriminant Analysis
    Lai, Zhihui
    Xu, Yong
    Yang, Jian
    Tang, Jinhui
    Zhang, David
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2013, 22 (10) : 3904 - 3915
  • [28] Adaptive Local Linear Discriminant Analysis
    Nie, Feiping
    Wang, Zheng
    Wang, Rong
    Wang, Zhen
    Li, Xuelong
    [J]. ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2020, 14 (01)
  • [29] Generalized robust linear discriminant analysis for jointly sparse learning
    Zhu, Yufei
    Lai, Zhihui
    Gao, Can
    Kong, Heng
    [J]. APPLIED INTELLIGENCE, 2024, 54 (19) : 9508 - 9523
  • [30] General sparse multi-class linear discriminant analysis
    Safo, Sandra E.
    Ahn, Jeongyoun
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 99 : 81 - 90