"Flux-balance formulae" for extreme mass-ratio inspirals

被引:19
作者
Isoyama, Soichiro [1 ,2 ]
Fujita, Ryuichi [3 ]
Nakano, Hiroyuki [4 ]
Sago, Norichika [5 ]
Tanaka, Takahiro [3 ,6 ]
机构
[1] Univ Guelph, Dept Phys, Guelph, ON N1G 2W1, Canada
[2] Univ Fed Rio Grande do Norte, Int Inst Phys, Campus Univ, BR-59078970 Natal, RN, Brazil
[3] Kyoto Univ, Yukawa Inst Theoret Phys, Ctr Gravitat Phys, Kyoto 6068502, Japan
[4] Ryukoku Univ, Fac Law, Kyoto 6128577, Japan
[5] Kyushu Univ, Fac Arts & Sci, Fukuoka 8190395, Japan
[6] Kyoto Univ, Dept Phys, Kyoto 6068502, Japan
关键词
ROTATING BLACK-HOLE; GRAVITATIONAL-RADIATION REACTION; ADIABATIC EVOLUTION; INCLINED ORBITS; SELF-FORCE; KERR; PERTURBATIONS; EQUATIONS; STABILITY;
D O I
10.1093/ptep/pty136
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The flux-balance formulae that determine the averaged evolution of energy, azimuthal angular momentum, and Carter constant in terms of the averaged asymptotic gravitational-wave fluxes for inspirals of small bodies into Kerr black holes were first derived about 15 years ago. However, this derivation is restricted to the case that the background Kerr geodesics are non-resonant (i.e., the radial and angular motions are always incommensurate), and excludes the resonant case that can be important for the radiative dynamics of extreme mass-ratio inspirals. We give here a new derivation of the flux formulae based on Hamiltonian dynamics of a self-forced particle motion, which is a valuable tool for analyzing self-force effects on generic (eccentric, inclined) bound orbits in the Kerr spacetime. This Hamiltonian derivation using action-angle variables is much simpler than the previous one, applies to resonant inspirals without any complication, and can be straightforwardly implemented by using analytical/numerical Teukolsky-based flux codes.
引用
收藏
页数:28
相关论文
共 97 条
[1]   STABILITY OF GRAVITY WITH A COSMOLOGICAL CONSTANT [J].
ABBOTT, LF ;
DESER, S .
NUCLEAR PHYSICS B, 1982, 195 (01) :76-96
[2]  
Amaro-Seoane P., ARXIV170200786ASTROP
[3]  
[Anonymous], 2015, Fund. Theor. Phys.
[4]   Beyond the Required LISA Free-Fall Performance: New LISA Pathfinder Results down to 20 μHz [J].
Armano, M. ;
Audley, H. ;
Baird, J. ;
Binetruy, P. ;
Born, M. ;
Bortoluzzi, D. ;
Castelli, E. ;
Cavalleri, A. ;
Cesarini, A. ;
Cruise, A. M. ;
Danzmann, K. ;
de Deus Silva, M. ;
Diepholz, I. ;
Dixon, G. ;
Dolesi, R. ;
Ferraioli, L. ;
Ferroni, V. ;
Fitzsimons, E. D. ;
Freschi, M. ;
Gesa, L. ;
Gibert, F. ;
Giardini, D. ;
Giusteri, R. ;
Grimani, C. ;
Grzymisch, J. ;
Harrison, I. ;
Heinzel, G. ;
Hewitson, M. ;
Hollington, D. ;
Hoyland, D. ;
Hueller, M. ;
Inchauspe, H. ;
Jennrich, O. ;
Jetzer, P. ;
Karnesis, N. ;
Kaune, B. ;
Korsakova, N. ;
Killow, C. J. ;
Lobo, J. A. ;
Lloro, I. ;
Liu, L. ;
Lopez-Zaragoza, J. P. ;
Maarschalkerweerd, R. ;
Mance, D. ;
Meshksar, N. ;
Martin, V. ;
Martin-Polo, L. ;
Martino, J. ;
Martin-Porqueras, F. ;
Mateos, I. .
PHYSICAL REVIEW LETTERS, 2018, 120 (06)
[5]   Science with the space-based interferometer LISA. V. Extreme mass-ratio inspirals [J].
Babak, Stanislav ;
Gair, Jonathan ;
Sesana, Alberto ;
Barausse, Enrico ;
Sopuerta, Carlos F. ;
Berry, Christopher P. L. ;
Berti, Emanuele ;
Amaro-Seoane, Pau ;
Petiteau, Antoine ;
Klein, Antoine .
PHYSICAL REVIEW D, 2017, 95 (10)
[6]   LISA capture sources: Approximate waveforms, signal-to-noise ratios, and parameter estimation accuracy [J].
Barack, L ;
Cutler, C .
PHYSICAL REVIEW D, 2004, 69 (08) :24
[7]  
Barack L., ARXIV 1806 05195 GR
[8]   Gravitational self-force on a particle in circular orbit around a Schwarzschild black hole [J].
Barack, Leor ;
Sago, Norichika .
PHYSICAL REVIEW D, 2007, 75 (06)
[9]   Self-force and radiation reaction in general relativity [J].
Barack, Leor ;
Pound, Adam .
REPORTS ON PROGRESS IN PHYSICS, 2019, 82 (01)
[10]   Beyond the geodesic approximation: Conservative effects of the gravitational self-force in eccentric orbits around a Schwarzschild black hole [J].
Barack, Leor ;
Sago, Norichika .
PHYSICAL REVIEW D, 2011, 83 (08)