The adsorption of atomic (H, C, N, O, S) and molecular (OH, CH NH, CO, NO, CN, N-2, HNO, NOH, HCN, x = 1-3) species at 1/4 monolayer coverage on an extended Ag(111) surface was studied using periodic density functional theory. Geometries and energies were calculated self-consistently using the PW91 functional; nonself-consistent energies using the RPBE functional are also provided. We analyze the binding energies, binding geometries, estimated diffusion barriers, harmonic vibrational frequencies, and energetic and geometric deformation parameters of these adsorbates, comparing them to experimental and theoretical results whenever possible. PW91 gives binding energies that match experimental binding energies more closely than RPBE, which consistently predicts weaker binding than PW91. The data were then used to construct and analyze thermochemistry-only potential energy pathways for the hydrocarbon-assisted and hydrogen-assisted selective catalytic reduction (SCR) of nitric oxide (NO). These analyses provide preliminary insights into the possible mechanistic paths of the SCR of NO on Ag(111). Specifically, we show that deep dehydrogenation leading to the formation of atomic intermediates is not favored on Ag(111).