Rank gradient, cost of groups and the rank versus Heegaard genus problem

被引:44
作者
Abert, Miklos [1 ]
Nikolov, Nikolay [2 ]
机构
[1] Alfred Renyi Inst Math, H-1053 Budapest, Hungary
[2] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.4171/JEMS/344
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the growth of the rank of subgroups of finite index in residually finite groups, by relating it to the notion of cost. As a by-product, we show that the 'rank vs. Heegaard genus' conjecture on hyperbolic 3-manifolds is incompatible with the 'fixed price problem' in topological dynamics.
引用
收藏
页码:1657 / 1677
页数:21
相关论文
共 32 条
[11]  
Farber M, 1998, MATH ANN, V311, P335, DOI 10.1007/s002080050190
[12]  
Gaboriau D, 2000, INVENT MATH, V139, P41, DOI 10.1007/s002229900019
[13]  
Gaboriau D., 2002, Publ. Math. Inst. Hautes Etudes Sci., P93
[14]  
GRIGORCHUK, 2000, Proc. Steklov Inst. Math., V231, P134
[15]  
Gruschko I, 1940, REC MATH, V8, P169
[16]   Weak containment in the space of actions of a free group [J].
Kechris, Alexander S. .
ISRAEL JOURNAL OF MATHEMATICS, 2012, 189 (01) :461-507
[17]  
Kechris AS, 2004, LECT NOTES MATH, V1852
[19]   Expanders, rank and graphs of groups [J].
Lackenby, M .
ISRAEL JOURNAL OF MATHEMATICS, 2005, 146 (1) :357-370
[20]   On the cost of generating an equivalence relation [J].
Levitt, G .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1995, 15 :1173-1181