Rank gradient, cost of groups and the rank versus Heegaard genus problem

被引:44
作者
Abert, Miklos [1 ]
Nikolov, Nikolay [2 ]
机构
[1] Alfred Renyi Inst Math, H-1053 Budapest, Hungary
[2] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.4171/JEMS/344
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the growth of the rank of subgroups of finite index in residually finite groups, by relating it to the notion of cost. As a by-product, we show that the 'rank vs. Heegaard genus' conjecture on hyperbolic 3-manifolds is incompatible with the 'fixed price problem' in topological dynamics.
引用
收藏
页码:1657 / 1677
页数:21
相关论文
共 32 条
[1]   Dimension and randomness in groups acting on rooted trees [J].
Abért, M ;
Virág, B .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 18 (01) :157-192
[2]  
Abert M., ERGODIC THE IN PRESS
[3]  
Abert M., FREIMANS CONJECTURE
[4]   The rank gradient from a combinatorial viewpoint [J].
Abert, Miklos ;
Jaikin-Zapirain, Andrei ;
Nikolov, Nikolay .
GROUPS GEOMETRY AND DYNAMICS, 2011, 5 (02) :213-230
[5]   Criteria for virtual fibering [J].
Agol, Ian .
JOURNAL OF TOPOLOGY, 2008, 1 (02) :269-284
[6]  
[Anonymous], 2002, ERGEB MATH GRENZGEB
[7]  
[Anonymous], GEOMETRY TOPOLOGY MO
[8]   Asymptote of the Betti numbers, I2-invariants and laminations [J].
Bergeron, N ;
Gaboriau, D .
COMMENTARII MATHEMATICI HELVETICI, 2004, 79 (02) :362-395
[9]   HEEGAARD GENUS OF CLOSED ORIENTABLE SEIFERT 3-MANIFOLDS [J].
BOILEAU, M ;
ZIESCHANG, H .
INVENTIONES MATHEMATICAE, 1984, 76 (03) :455-468
[10]  
Dooley A. H., FREIMANS CONJECTURE