Finite groups with biprimary Hall subgroups

被引:4
作者
Tyutyanov, Valentin N. [1 ]
Kniahina, Viktoryia N. [2 ]
机构
[1] Int Univ MITSO, Gomel Branch, Gomel 246019, BELARUS
[2] Gomel Engn Inst, Gomel 246035, BELARUS
关键词
Finite groups; Hall subgroups; Simple groups; pi-Hall subgroups;
D O I
10.1016/j.jalgebra.2015.08.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite group and let r be a prime divisor of the order of G. We prove that if r >= 5 and G has the E-{r,E-t}-property for all t is an element of pi(G)\{r}, then G is r-solvable. A group G is said to have the E-pi-property if G possesses a Hall pi-subgroup. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:430 / 440
页数:11
相关论文
共 18 条
[1]  
[Anonymous], 1967, ENDLICHE GRUPPEN
[2]   NEW CRITERIA FOR THE SOLVABILITY OF FINITE-GROUPS [J].
ARAD, Z ;
WARD, MB .
JOURNAL OF ALGEBRA, 1982, 77 (01) :234-246
[3]  
Carter P., 1973, SEM ALG GROUPS MIR M, P288
[4]   Number of Sylow subgroups and p-nilpotence of finite groups [J].
Chigira, N .
JOURNAL OF ALGEBRA, 1998, 201 (01) :71-85
[5]  
GROSS F, 1986, P LOND MATH SOC, V52, P464
[6]  
Hall P., 1956, Proc. London Math. Soc., V22, P286
[7]   ON GROUPS WHICH ARE THE PRODUCT OF 2 SOLVABLE SUBGROUPS [J].
KAZARIN, LC .
COMMUNICATIONS IN ALGEBRA, 1986, 14 (06) :1001-1066
[8]   THE MAXIMAL-SUBGROUPS OF THE CHEVALLEY GROUPS-G2(Q) WITH Q-ODD, THE REE GROUPS 2G2(Q), AND THEIR AUTOMORPHISM-GROUPS [J].
KLEIDMAN, PB .
JOURNAL OF ALGEBRA, 1988, 117 (01) :30-71
[9]  
Kondratiev A. S., 1989, MAT SBORNIK, V180, P787
[10]  
MALLE G, 1988, J REINE ANGEW MATH, V392, P70