A note on the almost sure central limit theorem for the product of some partial sums

被引:1
作者
Chen, Yang [1 ]
Tan, Zhongquan [2 ]
Wang, Kaiyong [1 ]
机构
[1] Suzhou Univ Sci & Technol, Sch Math & Phys, Suzhou 215009, Peoples R China
[2] Jiaxing Univ, Coll Math Phys & Informat Engn, Jiaxing 314001, Peoples R China
基金
美国国家科学基金会;
关键词
almost sure central limit theorem; partial sums; unbounded measurable functions; CONVERGENCE; ASYMPTOTICS;
D O I
10.1186/1029-242X-2014-243
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (X-n) be a sequence of i.i.d., positive, square integrable random variables with E(X-1) = mu > 0, Var(X-1) = sigma(2). Denote by S-n,S-k = Sigma X-n(i=1)i - X-k and by gamma = sigma/mu the coefficient of variation. Our goal is to show the unbounded, measurable functions g, which satisfy the almost sure central limit theorem, i.e., lim(N ->infinity)1/logN Sigma=(N)(n=1)1/ng((pi S-n(k=1)n,k/(n - 1)(n)mu(n))(1/gamma root n)) = integral(infinity)(0) g(x)dF(x) a.s., where F(.) is the distribution function of the random variable eN and N is a standard normal random variable.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 15 条
[1]   Almost sure central limit theorems under minimal conditions [J].
Berkes, I ;
Csaki, E ;
Horvath, L .
STATISTICS & PROBABILITY LETTERS, 1998, 37 (01) :67-76
[2]   AN ALMOST EVERYWHERE CENTRAL LIMIT-THEOREM [J].
BROSAMLER, GA .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1988, 104 :561-574
[3]   THE LAW OF THE ITERATED LOGARITHM FOR IDENTICALLY DISTRIBUTED RANDOM VARIABLES [J].
FELLER, W .
ANNALS OF MATHEMATICS, 1946, 47 (04) :631-638
[4]   CONVERGENCE RATES FOR CENTRAL LIMIT THEOREM [J].
FRIEDMAN, N ;
KATZ, M ;
KOOPMANS, LH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1966, 56 (04) :1062-&
[5]   A note on the almost sure limit theorem for the product of partial sums [J].
Gonchigdanzan, K ;
Rempala, GA .
APPLIED MATHEMATICS LETTERS, 2006, 19 (02) :191-196
[6]   On the convergence of generalized moments in almost sure central limit theorem [J].
Ibragimov, I ;
Lifshits, M .
STATISTICS & PROBABILITY LETTERS, 1998, 40 (04) :343-351
[7]   Almost sure central limit theorems for random functions [J].
Lu Chuanrong ;
Qiu Jin ;
Xu Jianjun .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 2006, 49 (12) :1788-1799
[8]   A note on asymptotic distribution of products of sums [J].
Lu, XW ;
Qi, YC .
STATISTICS & PROBABILITY LETTERS, 2004, 68 (04) :407-413
[9]  
Miao Y, 2008, P INDIAN AS-MATH SCI, V118, P289
[10]  
Petrov V. V., 1975, Sums of Independent Random Variables