A perspective on the high-voltage LiMn1.5Ni0.5O4 spinel cathode for lithium-ion batteries

被引:566
作者
Manthiram, Arumugam [1 ]
Chemelewski, Katharine
Lee, Eun-Sung
机构
[1] Univ Texas Austin, Electrochem Energy Lab, Austin, TX 78712 USA
关键词
CHARGE-DISCHARGE BEHAVIOR; ELECTROCHEMICAL PERFORMANCE; LINI0.5MN1.5O4; CATHODES; STRUCTURAL-CHANGES; FLUORINATED ELECTROLYTES; OXYGEN NONSTOICHIOMETRY; ELEVATED-TEMPERATURE; POSITIVE ELECTRODES; MANGANESE SPINEL; LIMN2O4; SPINEL;
D O I
10.1039/c3ee42981d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The LiMn1.5Ni0.5O4 spinel is an attractive cathode candidate for next generation lithium-ion batteries as it offers high power capability with an operating voltage of similar to 4.7 V and a capacity of similar to 135 mA h g(-1). However, its commercialization is plagued by severe capacity fade, particularly at elevated temperatures, in full cells employing a graphite anode. This perspective article provides an overview of the recent developments on understanding various factors that influence the electrochemical performance of the high-voltage spinel cathodes. The factors include the degree of cation ordering, Mn3+ content, morphology, and surface planes/compositions in contact with the electrolyte, which are influenced by synthesis and annealing conditions as well as cation doping. For example, samples with a {111} family of surface planes show superior performance. Recent magnetic measurements and examination of discharge profiles below 3 V have become valuable to get a more precise measure of the degree of cation ordering. Also, surface modifications and electrolyte additives have shown marginal gains. Although acceptable performances have been obtained in half-cells with a metallic lithium anode, capacity fade is seen in full cells with a graphite anode due to metal dissolution at the high operating voltage of 4.7 V and Li+ consumption by the steadily forming solid-electrolyte interphase (SEI) layer promoted by Mn/Ni deposition on the graphite surface. Based on the current understanding, future directions are pointed out.
引用
收藏
页码:1339 / 1350
页数:12
相关论文
共 100 条
[1]   LiCr0.2Ni0.4Mn1.4O4 spinels exhibiting huge rate capability at 25 and 55°C: Analysis of the effect of the particle size [J].
Aklalouch, Mohamed ;
Manuel Amarilla, Jose ;
Saadoune, Ismael ;
Maria Rojo, Jose .
JOURNAL OF POWER SOURCES, 2011, 196 (23) :10222-10227
[2]   Synergistic effects of double substitution in LiNi0.5-yFeyMn1.5O4 spinel as 5 V cathode materials [J].
Alcántara, R ;
Jaraba, M ;
Lavela, P ;
Lloris, JM ;
Vicente, CP ;
Tirado, JL .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (01) :A13-A18
[3]   Optimizing preparation conditions for 5 V electrode performance, and structural changes in Li1-xNi0.5Mn1.5O4 spinel [J].
Alcántara, R ;
Jaraba, M ;
Lavela, P ;
Tirado, JL .
ELECTROCHIMICA ACTA, 2002, 47 (11) :1829-1835
[4]   Topotactic two-phase reactions of Li[Ni1/2Mn3/2]O4 (P4332) in nonaqueous lithium cells [J].
Ariyoshi, K ;
Iwakoshi, Y ;
Nakayama, N ;
Ohzuku, T .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (02) :A296-A303
[5]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[6]   Influence of lattice parameter differences on the electrochemical performance of the 5 V spinel LiMn1.5-yNi0.5-zMy+zO4 (M = Li, Mg, Fe, Co, and Zn) [J].
Arunkumar, TA ;
Manthiram, A .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2005, 8 (08) :A403-A405
[7]   Review on electrode-electrolyte solution interactions, related to cathode materials for Li-ion batteries [J].
Aurbach, Doron ;
Markovsky, Boris ;
Salitra, Gregory ;
Markevich, Elena ;
Talyossef, Yossi ;
Koltypin, Maxim ;
Nazar, Linda ;
Ellis, Brian ;
Kovacheva, Daniella .
JOURNAL OF POWER SOURCES, 2007, 165 (02) :491-499
[8]   Simulation of Aqueous Dissolution of Lithium Manganate Spinel from First Principles [J].
Benedek, R. ;
Thackeray, M. M. ;
Low, J. ;
Bucko, Tomas .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (06) :4050-4059
[9]   Composition-Structure Relationships in the Li-Ion Battery Electrode Material LiNi0.5Mn1.5O4 [J].
Cabana, Jordi ;
Casas-Cabanas, Montserrat ;
Omenya, Fredrick O. ;
Chernova, Natasha A. ;
Zeng, Dongli ;
Whittingham, M. Stanley ;
Grey, Clare P. .
CHEMISTRY OF MATERIALS, 2012, 24 (15) :2952-2964
[10]   Comparison of the Performance of LiNi1/2Mn3/2O4 with Different Microstructures [J].
Cabana, Jordi ;
Zheng, Honghe ;
Shukla, Alpesh K. ;
Kim, Chunjoong ;
Battaglia, Vincent S. ;
Kunduraci, Muharrem .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (09) :A997-A1004