Reweighted Sparse Regression for Hyperspectral Unmixing

被引:68
|
作者
Zheng, Cheng Yong [1 ,2 ]
Li, Hong [3 ]
Wang, Qiong [3 ]
Chen, C. L. Philip [4 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Automat, Wuhan 430074, Peoples R China
[2] Wuyi Univ, Sch Math & Computat Sci, Jiangmen 529020, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R China
[4] Univ Macau, Fac Sci & Technol, Macau, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Hyperspectral unmixing (HSU); iterative reweighting; sparse regression; ALGORITHM; REGULARIZATION; OPTIMIZATION; NMF;
D O I
10.1109/TGRS.2015.2459763
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Hyperspectral unmixing (HSU) plays an important role in hyperspectral image (HSI) analysis. Recently, the HSU method based on sparse regression has drawn much attention. This paper presents a new weighted sparse regression problem for HSU and proposes two iterative reweighted algorithms for solving this problem, where the weights used for the next iteration are computed from the value of the current solution, and all the mixed pixels of an HSI are unmixed simultaneously. The proposed algorithms can be seen as the combinations of alternating direction method of multipliers and iterative reweighting procedure. Experimental results on both synthetic and real data demonstrate some advantages of the proposed algorithms over some other state-of-the-art sparse unmixing approaches.
引用
收藏
页码:479 / 488
页数:10
相关论文
共 50 条
  • [1] DOUBLE REWEIGHTED SPARSE REGRESSION FOR HYPERSPECTRAL UNMIXING
    Wang, Rui
    Li, Heng-Chao
    Liao, Wenzhi
    Pizurica, Aleksandra
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 6986 - 6989
  • [2] Fast Hyperspectral Unmixing via Reweighted Sparse Regression
    Han, Hongwei
    Guo, Ke
    Wang, Maozhi
    Zhang, Tingbin
    Zhang, Shuang
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2019, E102D (09): : 1819 - 1832
  • [3] Reweighted local collaborative sparse regression for hyperspectral unmixing
    Li, Yan
    Zhang, Shaoquan
    Deng, Chengzhi
    Wang, Shengqian
    INFRARED PHYSICS & TECHNOLOGY, 2019, 97 : 277 - 286
  • [4] Hyperspectral Unmixing Using Double Reweighted Collaborative Sparse Regression
    Li, Yan
    Wang, Shengqian
    ELEVENTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2019), 2019, 11179
  • [5] Double Reweighted Sparse Regression and Graph Regularization for Hyperspectral Unmixing
    Wang, Si
    Huang, Ting-Zhu
    Zhao, Xi-Le
    Liu, Gang
    Cheng, Yougan
    REMOTE SENSING, 2018, 10 (07)
  • [6] Hyperspectral Unmixing Using Double Reweighted Sparse Regression and Total Variation
    Wang, Rui
    Li, Heng-Chao
    Pizurica, Aleksandra
    Li, Jun
    Plaza, Antonio
    Emery, William J.
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (07) : 1146 - 1150
  • [7] Reweighted sparse nonnegative matrix decomposition for hyperspectral unmixing
    Jia Q.
    Liao S.
    Zhang Z.
    Yang X.
    Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2020, 49
  • [8] Collaborative Sparse Regression for Hyperspectral Unmixing
    Iordache, Marian-Daniel
    Bioucas-Dias, Jose M.
    Plaza, Antonio
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (01): : 341 - 354
  • [9] Reweighted sparse unmixing for hyperspectral images with noise level estimation
    Wang, Si
    Huang, Ting-Zhu
    Zhao, Xi-le
    Huang, Jie
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 421
  • [10] ON THE CONVERGENCE OF LINEARIZED ADMM FOR SEPARABLE REWEIGHTED SPARSE HYPERSPECTRAL UNMIXING
    Ozawa, Keisuke
    2022 12TH WORKSHOP ON HYPERSPECTRAL IMAGING AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2022,