Low-Rank Matrix Recovery From Errors and Erasures

被引:109
|
作者
Chen, Yudong [1 ]
Jalali, Ali [1 ]
Sanghavi, Sujay [1 ]
Caramanis, Constantine [1 ]
机构
[1] Univ Texas Austin, Dept Elect & Comp Engn, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
Low-rank; matrix decomposition; robustness; sparsity; statistical learning;
D O I
10.1109/TIT.2013.2249572
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper considers the recovery of a low-rank matrix from an observed version that simultaneously contains both 1) erasures, most entries are not observed, and 2) errors, values at a constant fraction of (unknown) locations are arbitrarily corrupted. We provide a new unified performance guarantee on when minimizing nuclear norm plus norm succeeds in exact recovery. Our result allows for the simultaneous presence of random and deterministic components in both the error and erasure patterns. By specializing this one single result in different ways, we recover (up to poly-log factors) as corollaries all the existing results in exact matrix completion, and exact sparse and low-rank matrix decomposition. Our unified result also provides the first guarantees for 1) recovery when we observe a vanishing fraction of entries of a corrupted matrix, and 2) deterministic matrix completion.
引用
收藏
页码:4324 / 4337
页数:14
相关论文
共 50 条
  • [11] Matrix recovery with implicitly low-rank data
    Xie, Xingyu
    Wu, Jianlong
    Liu, Guangcan
    Wang, Jun
    NEUROCOMPUTING, 2019, 334 : 219 - 226
  • [12] Maximum entropy low-rank matrix recovery
    Mak, Simon
    Xie, Yao
    2018 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2018, : 361 - 365
  • [13] LOW-RANK MATRIX RECOVERY IN POISSON NOISE
    Cao, Yang
    Xie, Yao
    2014 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2014, : 384 - 388
  • [14] Accelerated algorithms for low-rank matrix recovery
    Zhang, Shuiping
    Tian, Jinwen
    MIPPR 2013: PARALLEL PROCESSING OF IMAGES AND OPTIMIZATION AND MEDICAL IMAGING PROCESSING, 2013, 8920
  • [15] Uniqueness conditions for low-rank matrix recovery
    Eldar, Y. C.
    Needell, D.
    Plan, Y.
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2012, 33 (02) : 309 - 314
  • [16] Uniqueness conditions for low-rank matrix recovery
    Eldar, Y. C.
    Needell, D.
    Plan, Y.
    WAVELETS AND SPARSITY XIV, 2011, 8138
  • [17] Low-Rank Matrix Recovery With Poisson Noise
    Xie, Yao
    Chi, Yuejie
    Calderbank, Robert
    2013 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2013, : 622 - 622
  • [18] Low-Rank Matrix Recovery via Continuation-Based Approximate Low-Rank Minimization
    Zhang, Xiang
    Gao, Yongqiang
    Lan, Long
    Guo, Xiaowei
    Huang, Xuhui
    Luo, Zhigang
    PRICAI 2018: TRENDS IN ARTIFICIAL INTELLIGENCE, PT I, 2018, 11012 : 559 - 573
  • [19] From compressed sensing to low-rank matrix recovery: Theory and applications
    Peng, Y.-G. (pengyigang@gmail.com), 1600, Science Press (39):
  • [20] Community Discovery from Social Media by Low-Rank Matrix Recovery
    Zhuang, Jinfeng
    Mei, Tao
    Hoi, Steven C. H.
    Hua, Xian-Sheng
    Zhang, Yongdong
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2015, 5 (04)