Chemistry-driven changes strongly influence climate forcing from vegetation emissions

被引:28
作者
Weber, James [1 ,5 ]
Archer-Nicholls, Scott [1 ,6 ]
Abraham, Nathan Luke [1 ,2 ]
Shin, Youngsub Matthew [1 ]
Griffiths, Paul [1 ,2 ]
Grosvenor, Daniel P. [3 ]
Scott, Catherine E. [4 ]
Archibald, Alex T. [1 ,2 ]
机构
[1] Univ Cambridge, Ctr Atmospher Sci, Yusuf Hamied Dept Chem, Cambridge CB2 1EW, England
[2] Univ Cambridge, Natl Ctr Atmospher Sci, Yusuf Hamied Dept Chem, Cambridge CB2 1EW, England
[3] Univ Leeds, Sch Earth & Environm, Inst Climate & Atmospher Sci, Leeds LS2 9JT, W Yorkshire, England
[4] Univ Leeds, Sch Earth & Environm, Leeds LS2 9JT, W Yorkshire, England
[5] Univ Sheffield, Sch Biosci, Sheffield S10 2TN, S Yorkshire, England
[6] Univ Manchester, Res IT, Manchester M13 9PL, Lancs, England
基金
英国自然环境研究理事会;
关键词
SECONDARY ORGANIC AEROSOL; DEGRADATION SCHEME; ISOPRENE EMISSION; NATURAL AEROSOLS; MODEL; EARTH; FEEDBACKS; MECHANISM; PHOTOSYNTHESIS; OXIDATION;
D O I
10.1038/s41467-022-34944-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Biogenic volatile organic compounds (BVOCs) affect climate via changes to aerosols, aerosol-cloud interactions (ACI), ozone and methane. BVOCs exhibit dependence on climate (causing a feedback) and land use but there remains uncertainty in their net climatic impact. One factor is the description of BVOC chemistry. Here, using the earth-system model UKESM1, we quantify chemistry's influence by comparing the response to doubling BVOC emissions in the pre-industrial with standard and state-of-science chemistry. The net forcing (feedback) is positive: ozone and methane increases and ACI changes outweigh enhanced aerosol scattering. Contrary to prior studies, the ACI response is driven by cloud droplet number concentration (CDNC) reductions from suppression of gas-phase SO2 oxidation. With state-of-science chemistry the feedback is 43% smaller as lower oxidant depletion yields smaller methane increases and CDNC decreases. This illustrates chemistry's significant influence on BVOC's climatic impact and the more complex pathways by which BVOCs influence climate than currently recognised. The modelling of BVOC chemistry strongly affects how doubling of BVOC emissions affects climate. Lower oxidant depletion with state-of-science chemistry leads to 43% smaller positive forcing from smaller methane increases and cloud albedo decreases.
引用
收藏
页数:12
相关论文
共 65 条
[1]   The Common Representative Intermediates Mechanism Version 2 in the United Kingdom Chemistry and Aerosols Model [J].
Archer-Nicholls, S. ;
Abraham, N. L. ;
Shin, Y. M. ;
Weber, J. ;
Russo, M. R. ;
Lowe, D. ;
Utembe, S. R. ;
O'Connor, F. M. ;
Kerridge, B. ;
Latter, B. ;
Siddans, R. ;
Jenkin, M. ;
Wild, O. ;
Archibald, A. T. .
JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2021, 13 (05)
[2]   Impacts of HOx regeneration and recycling in the oxidation of isoprene: Consequences for the composition of past, present and future atmospheres [J].
Archibald, A. T. ;
Levine, J. G. ;
Abraham, N. L. ;
Cooke, M. C. ;
Edwards, P. M. ;
Heard, D. E. ;
Jenkin, M. E. ;
Karunaharan, A. ;
Pike, R. C. ;
Monks, P. S. ;
Shallcross, D. E. ;
Telford, P. J. ;
Whalley, L. K. ;
Pyle, J. A. .
GEOPHYSICAL RESEARCH LETTERS, 2011, 38
[3]   Description and evaluation of the UKCA stratosphere-troposphere chemistry scheme (StratTrop vn 1.0) implemented in UKESM1 [J].
Archibald, Alexander T. ;
O'Connor, Fiona M. ;
Abraham, Nathan Luke ;
Archer-Nicholls, Scott ;
Chipperfield, Martyn P. ;
Dalvi, Mohit ;
Folberth, Gerd A. ;
Dennison, Fraser ;
Dhomse, Sandip S. ;
Griffiths, Paul T. ;
Hardacre, Catherine ;
Hewitt, Alan J. ;
Hill, Richard S. ;
Johnson, Colin E. ;
Keeble, James ;
Kohler, Marcus O. ;
Morgenstern, Olaf ;
Mulcahy, Jane P. ;
Ordonez, Carlos ;
Pope, Richard J. ;
Rumbold, Steven T. ;
Russo, Maria R. ;
Savage, Nicholas H. ;
Sellar, Alistair ;
Stringer, Marc ;
Turnock, Steven T. ;
Wild, Oliver ;
Zeng, Guang .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2020, 13 (03) :1223-1266
[4]   A new model mechanism for atmospheric oxidation of isoprene: global effects on oxidants, nitrogen oxides, organic products, and secondary organic aerosol [J].
Bates, Kelvin H. ;
Jacob, Daniel J. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2019, 19 (14) :9613-9640
[5]  
Boucher O, 2014, CLIMATE CHANGE 2013: THE PHYSICAL SCIENCE BASIS, P571, DOI 10.1017/cbo9781107415324.016
[6]   Ensemble projection of global isoprene emissions by the end of 21st century using CMIP6 models [J].
Cao, Yang ;
Yue, Xu ;
Liao, Hong ;
Yang, Yang ;
Zhu, Jia ;
Chen, Lei ;
Tian, Chenguang ;
Lei, Yadong ;
Zhou, Hao ;
Ma, Yimian .
ATMOSPHERIC ENVIRONMENT, 2021, 267
[7]   Large contribution of natural aerosols to uncertainty in indirect forcing [J].
Carslaw, K. S. ;
Lee, L. A. ;
Reddington, C. L. ;
Pringle, K. J. ;
Rap, A. ;
Forster, P. M. ;
Mann, G. W. ;
Spracklen, D. V. ;
Woodhouse, M. T. ;
Regayre, L. A. ;
Pierce, J. R. .
NATURE, 2013, 503 (7474) :67-+
[8]   A review of natural aerosol interactions and feedbacks within the Earth system [J].
Carslaw, K. S. ;
Boucher, O. ;
Spracklen, D. V. ;
Mann, G. W. ;
Rae, J. G. L. ;
Woodward, S. ;
Kulmala, M. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2010, 10 (04) :1701-1737
[9]   AerChemMIP: quantifying the effects of chemistry and aerosols in CMIP6 [J].
Collins, William J. ;
Lamarque, Jean-Franois ;
Schulz, Michael ;
Boucher, Olivier ;
Eyring, Veronika ;
Hegglin, Michaela I. ;
Maycock, Amanda ;
Myhre, Gunnar ;
Prather, Michael ;
Shindell, Drew ;
Smith, Steven J. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2017, 10 (02) :585-607
[10]   Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): a review of laboratory, field and model studies [J].
Ervens, B. ;
Turpin, B. J. ;
Weber, R. J. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2011, 11 (21) :11069-11102