In-fiber production of polymeric particles for biosensing and encapsulation

被引:47
作者
Kaufman, Joshua J. [1 ]
Ottman, Richard [2 ]
Tao, Guangming [1 ]
Shabahang, Soroush [1 ]
Banaei, Esmaeil-Hooman [3 ]
Liang, Xiangdong [4 ]
Johnson, Steven G. [4 ]
Fink, Yoel [5 ]
Chakrabarti, Ratna [2 ]
Abouraddy, Ayman F. [1 ]
机构
[1] Univ Cent Florida, CREOL, Coll Opt & Photon, Orlando, FL 32816 USA
[2] Univ Cent Florida, Burnett Sch Biomed Sci, Coll Med, Orlando, FL 32816 USA
[3] Univ Cent Florida, Dept Elect Engn & Comp Sci, Orlando, FL 32816 USA
[4] MIT, Dept Math, Cambridge, MA 02139 USA
[5] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
DRUG-DELIVERY; NANOPARTICLE; PROTEIN; TECHNOLOGIES; NANOSPHERES; STABILITY; EMULSIONS; MATRIX; SHAPE;
D O I
10.1073/pnas.1310214110
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Polymeric micro- and nanoparticles are becoming a mainstay in biomedicine, medical diagnostics, and therapeutics, where they are used in implementing sensing mechanisms, as imaging contrast agents, and in drug delivery. Current approaches to the fabrication of such particles are typically finely tuned to specific monomer or polymer species, size ranges, and structures. We present a general scalable methodology for fabricating uniformly sized spherical polymeric particles from a wide range of polymers produced with complex internal architectures and continuously tunable diameters extending from the millimeter scale down to 50 nm. Controllable access to such a wide range of sizes enables broad applications in cancer treatment, immunology, and vaccines. Our approach harnesses thermally induced, predictable fluid instabilities in composite core/cladding polymer fibers drawn from a macroscopic scaled-up model called a "preform." Through a stack-and-draw process, we produce fibers containing a multiplicity of identical cylindrical cores made of the polymers of choice embedded in a polymer cladding. The instability leads to the breakup of the initially intact cores, independent of the polymer chemistry, into necklaces of spherical particles held in isolation within the cladding matrix along the entire fiber length. We demonstrate here surface functionalization of the extracted particles for biodetection through specific protein-protein interactions, volumetric encapsulation of a biomaterial in spherical polymeric shells, and the combination of both surface and volumetric functionalities in the same particle. These particles used in distinct modalities may be produced from the desired biocompatible polymer by changing only the geometry of the macroscopic preform from which the fiber is drawn.
引用
收藏
页码:15549 / 15554
页数:6
相关论文
共 63 条
[1]   Towards multimaterial multifunctional fibres that see, hear, sense and communicate [J].
Abouraddy, A. F. ;
Bayindir, M. ;
Benoit, G. ;
Hart, S. D. ;
Kuriki, K. ;
Orf, N. ;
Shapira, O. ;
Sorin, F. ;
Temelkuran, B. ;
Fink, Y. .
NATURE MATERIALS, 2007, 6 (05) :336-347
[2]   Targeted nanoparticle enhanced proapoptotic peptide as potential therapy for glioblastoma [J].
Agemy, Lilach ;
Friedmann-Morvinski, Dinorah ;
Kotamraju, Venkata Ramana ;
Roth, Lise ;
Sugahara, Kazuki N. ;
Girard, Olivier M. ;
Mattrey, Robert F. ;
Verma, Inder M. ;
Ruoslahti, Erkki .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (42) :17450-17455
[3]   The biocompatibility and antibacterial properties of collagen-stabilized, photochemically prepared silver nanoparticles [J].
Alarcon, Emilio I. ;
Udekwu, Klas ;
Skog, Marten ;
Pacioni, Natalia L. ;
Stamplecoskie, Kevin G. ;
Gonzalez-Bejar, Maria ;
Polisetti, Naresh ;
Wickham, Abeni ;
Richter-Dahlfors, Agneta ;
Griffith, May ;
Scaiano, Juan C. .
BIOMATERIALS, 2012, 33 (19) :4947-4956
[4]   Formation of dispersions using "flow focusing" in microchannels [J].
Anna, SL ;
Bontoux, N ;
Stone, HA .
APPLIED PHYSICS LETTERS, 2003, 82 (03) :364-366
[5]  
[Anonymous], P 7 INT C MICR AN SY
[6]   A Facile and General Method for the Encapsulation of Different Types of Imaging Contrast Agents Within Micrometer-Sized Polymer Beads [J].
Bai, Meng-Yi ;
Moran, Christine H. ;
Zhang, Lei ;
Liu, Changjun ;
Zhang, Yu ;
Wang, Lihong V. ;
Xia, Younan .
ADVANCED FUNCTIONAL MATERIALS, 2012, 22 (04) :764-770
[7]   Polymeric nano- and microparticle technologies for oral gene delivery [J].
Bhavsar, Mayank D. ;
Amiji, Mansoor M. .
EXPERT OPINION ON DRUG DELIVERY, 2007, 4 (03) :197-213
[8]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[9]   Particle shape: A new design parameter for micro- and nanoscale drug delivery carriers [J].
Champion, Julie A. ;
Katare, Yogesh K. ;
Mitragotri, Samir .
JOURNAL OF CONTROLLED RELEASE, 2007, 121 (1-2) :3-9
[10]   Preparation and characterization of PE38KDEL-loaded anti-HER2 nanoparticles for targeted cancer therapy [J].
Chen, Huaiwen ;
Gao, Jie ;
Lu, Ying ;
Kou, Geng ;
Zhang, He ;
Fan, Li ;
Sun, Zhiguo ;
Guo, Yajun ;
Zhong, Yanqiang .
JOURNAL OF CONTROLLED RELEASE, 2008, 128 (03) :209-216